
 
 

  

Abstract—This paper presents an adaptive control strategy 
for wind energy conversion systems. The control scheme uses a 
B-spline artificial neural network for tuning controllers when 
the system is subjected to disturbances. Voltage-source 
converter is controlled in a synchronous orthogonal d-q frame 
by an adaptive PI controller. The B-spline neural network must 
be able to enhance the system performance through online 
updating parameters. Thus, the paper proposes the use of 
adaptive PI controllers to regulate the current, frequency, and 
DC link voltage. MatLab is employed for simulation studies to 
verify the performance of the proposed strategy. 

I. INTRODUCTION 
he sudden increase in the price of oil stimulated a 
number of substantial, government funded programs of 
research, development and demonstration. Mainly, in 

recent years the development of wind energy conversion 
systems (WECS) has been increased. The expansion of 
WECS in some countries has been more rapid than in others, 
and this variance cannot be explained simply by differences 
in the wind speeds [1]. 

Nowadays, doubly fed induction generators (DFIGs) are 
widely used as the generator in a variable speed wind turbine 
system. The DFIG needs a gearbox to match the turbine and 
rotor speed. The variable speed wind turbine reliability can 
be improved significantly using a direct drive-based 
permanent magnet synchronous generator (PMSG). The 
PMSG has the following main characteristics: (i) full 
operating speed range; (ii) brushless; (iii) full scale power 
electronic converter; (iv) complete control of active and 
reactive power exchanged with the grid [2]. Power 
electronics, being the technology of efficiently converting 
electric power, plays an important role in wind power 
systems. It is an essential element for integrating the variable 
speed wind power units to achieve high efficiency and high 
performance in power systems. Even in a fixed speed wind 
turbine, where wind power generators are directly connected 
to the grid, thyristors are used as soft-starters. In particular, 
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voltage sourced converter (VSC) units are used to match the 
characteristics of wind turbines with the requirements of grid 
connections, including frequency, voltage, control of active 
and reactive power, harmonics, etc. [3]. 

For a grid connected distributed generation unit, the 
interface is conventionally controlled as a current controlled 
VSC (CC-VSC). Thus, the VSC’s direct-quadrature current 
components are used to provide instantaneous control of 
active and reactive power exchange between the VSC and 
the grid [4]. In this context, a decoupled instantaneous active 
and reactive power control capability has been demonstrated 
in [5]-[6]. However, the non-linear nature and wide range of 
the VSC’s operation requirements impose considerable 
difficulty in control design. Four-quadrant power control 
requires the power converter AC output voltage and/or 
current amplitude to vary within the full-rated range and 
phase angle, while the control variables are all related to DC 
voltage [7]. 

Major techniques to regulate the CC-VSC output current 
include either a variable switching frequency, such as the 
hysteresis control scheme, or fixed switching frequency 
schemes, such as the ramp comparison, stationary, and 
synchronous frame proportional–integral (PI), optimal, 
nonlinear, adaptive and robust, predictive control, and soft 
computing or control techniques such as fuzzy control, 
neural networks control, and on the fusion or hybrid of hard 
and soft control techniques [8].  

When a conventional PI control is used, the parameters 
have to be tuned, and since it is a linear technique and the 
parameters are fixed, the good performance of the system 
can only be assured around the operating point for which the 
parameters were adjusted. On the other hand, using the 
parameters from PI scheme like input for an adaptive 
technique, some author mixed neural networks and PID 
techniques to strengthen the linear controller. In [9], [10] a 
back propagation neural networks was used to adjust 
coefficients 𝑘!, 𝑘!, and 𝑘! of PID controllers attaining 
power regulation of wind turbines. The similar PID tuning 
strategy using radial basis function (RBF) neural network for 
pitch angle control systems [11]. However, tuning 
alternatives are needed for electrical grid complexity. In 
these work we proposed a good adaptive tuning technique 
based on B-spline neural network (BSNN). 

The objective is to adaptively adjust the gains in 
accordance to the present grid operating condition. This is 
achieved by a strategy to update conventional PIs currently 
operating in electrical grid that were tuned time ago. The 
main idea is to re-tune basically the PIs gains through an on-
line procedure, which involve a few measurements. 
Usually, the VSC synchronization is made by a phase-locked 

Adaptive controller for PMSG wind turbine systems with back-to-
back PWM converters 

Omar Aguilar, Ruben Tapia, Juan M. Ramirez, Antonio Valderrabano 

T

Proceedings of International Joint Conference on Neural Networks, Dallas, Texas, USA, August 4-9, 2013

978-1-4673-6129-3/13/$31.00 ©2013 IEEE 3125



 
 

loop (PLL) system. Nevertheless, having a good 
synchronization permits a good grid voltage phase and 
amplitude monitoring, and enhancing the capability of 
injecting power into the grid. A good PLL design may 
provide further advanced functionalities to the control 
system, as it is the case for the islanding detection mode for 
wind farms [12]. 

II. WIND ENERGY CONVERSION SYSTEM 
A WECS is a structure that transforms the kinetic energy 

from the wind into electrical energy. This system consists 
mainly of three parts: (i) a wind turbine drive train; (ii) an 
electric generator; (iii) a back-to-back converter, Fig. 1 [8]. 

 

 
Fig. 1.  Wind energy conversion scheme using PMSG. 
 

A. Permanent Magnet Synchronous Generator Model 
The PMSG is modeled under the following simplifying 

assumptions: (i) sinusoidal distribution of stator winding; (ii) 
electric and magnetic symmetry; (iii) negligible iron losses 
and unsaturated magnetic circuit. The PMSM’s voltage and 
electromagnetic torque equations in the d-q reference frames 
are given by the following equations [13]: 
 

vd = −Rsid − Ld
did
dt

+ Lqiqωs        (1) 

vq = −Rsiq − Lq
diq
dt
+ Ldid −ψm( )ωs      (2) 

 
where 𝑣!, 𝑣!, 𝑖! and 𝑖! are the d-q axis voltages and 
currents, respectively; 𝑅! is the stator resistance; 𝐿! and 𝐿! 
are the d-q axis inductances; 𝜔! is the generator rotational 
speed; 𝜓! is the permanent magnetic flux. Under the steady 
state condition derivative terms are zero, 
 

 sqqdsd iLiRv ω+−=  (3) 

 ( ) smddqsq iLiRv ωψ−+−=  (4) 
 
Normally, the difference between the d-q axis mutual 

inductance is very small for a direct-driven multi-pole 
PMSG, and the stator winding resistance is much smaller 
than the synchronous reactance. Therefore 𝑇! = p𝑖!𝜓!; p is 
the number of pole pairs. 

B. Wind Turbine Model 
The mechanical power extracted by a wind turbine is 

expressed by the cube law equation [13], 
 

Pwt = 0.5ρπR
2v3Cp λ( )                      (5) 

 
where 𝜌 is the air density; 𝑅 is the blade length; 𝜔! is the 
rotor speed; v is the wind speed and; 𝐶! 𝜆  is the turbine 
performance coefficient. 𝐶! is a function of the tip-speed-
ratio 𝜆. Using generator convention; the rotational speed of 
the generator and wind turbine driving torque becomes [13], 
 

 J dωh

dt
= Γwt −Te −Bωh

 (6) 

 Te = p ψmiq + Ld − Lq( ) idiq"# $%  (7) 

 
where Γ!" is the turbine driving torque referred to the 
generator (Γ!" = 𝑃!" 𝜔!); 𝐵 is the active damping 
coefficient representing turbine rotational losses; and 
𝜔! = 𝑖𝜔!, where 𝑖 is the ratio of a rigid drive train. 

III. BACK TO BACK CONVERTER MODEL 
Fig. 1 illustrates that back-to-back converter system can 

be considered as the composition of two VSC: the right-hand 
side includes the DC-voltage, active and reactive power 
controllers, and the left-hand side controls the generator’s 
speed. As Fig. 1 shows, the active and reactive power 
controller and the controlled DC-voltage are interfaced with 
the PMSG and the grid, respectively. WECSs are requested 
to operate robustly in different grid locations and to keep 
ancillary services in order to behave as a conventional power 
plant. The control scheme for the WECS-based on PMSG is 
designed to satisfy grid requirements. 

The diagram of a three-phase three-wire VSC connected 
to the AC system, represented by an equivalent Thevenin 
circuit via the inductance and resistance (𝐿!, 𝑅!) of the 
coupling transformer is presented in Fig. 1. The converter’s 
DC terminal is connected to a shunt capacitance (𝐶!") and 
resistance (𝑅!"), which represent switching losses. The DC 
and AC side power balancing are expressed as [7]: 

 
 dIabc

dt
=

1
Ls + LT

− Rs +RT( )Iabc +VSabc −VT"# $%  (8) 

 dVdc
dt

=
1
Cdc

−
Vdc
Rdc

+ Iabc
T VT
Rdc

"

#
$

%

&
'  (9) 

 
Using the orthogonal transformation, it can be, 
 
 dId

dt
= −aId +ω Iq + bVsd − bVTd  (10) 

 dIq
dt

= −ω Id − aIq + bVsq − bVTq  (11) 

 dVdc
dt

=
1
Cdc

−
Vdc
Rdc

+
1
Vdc

idvTd + iqvTq( )
"

#
$

%

&
'  (12) 

 
where 𝑎 = 𝑅! + 𝑅! / 𝐿! + 𝐿! , 𝑏 = 1 𝐿! + 𝐿! . 
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In some applications the Park transformation is not 
employed but its inverse is necessary; it depends on the 
control design. That is, the inverse Park transform allows, 
from constant values generating signals in-phase or anti-
phase, respect to the reference. That is especially useful for 
flexible AC transmission systems (FACTS) and power 
conditioners’ control [14]. Instantaneous complex power are 
expressed by [14], [15], 

 
S = VTdITd +VTqITq( )− j VTqITd −VTdITq( )     (13) 

 
Equation (13) suggest that if 𝑉!" = 0, the active and 

reactive power components are proportional to 𝑖! and 𝑖!, 
respectively. This property is widely employed in the control 
of grid-connected three-phase VSC systems [15]. The angle 
𝜃 of the grid voltage is computed and provided by a phase-
locked loop. The PLL is responsible for measuring the angle 
of the reference vector respect to the axis 𝛼. Therefore, it is 
possible to assess the direct or reverse Park transformation. 
There exist a variety of PLL structures. The evaluation of the 
𝑡𝑎𝑛!! 𝛽 𝛼  is an easy way to estimate, taking care of the 
signals’ sign [12], [15]-[16]. 

IV. CONTROL WECS-BASED ON PMSG 
The main advantage of the back-to-back converter is that 

it allows independently handle the active and reactive power 
flow between two AC systems with different characteristics 
(fundamental frequency, switching frequency, input voltage, 
etc.), However, to achieve this, it is necessary to investigate 
control strategies to attain the desired values. In the control 
scheme, the generator side’s converter controls the rotor 
speed for maximum power extraction, using a feedforward 
control to produce the control signals in dq-frame. Thus, we 
have two decoupled, first order linear systems, Fig. 2. The 
grid side’s converter regulates the DC-link voltage, and also 
the reactive power flow between the wind generator and the 
grid. Due to their simplicity, schemes based on classical PI 
controllers used in the d-q frame are implemented for 
controlling DC voltage. 

A. Generator side converter control 
The generator side control scheme is shown in Fig. 2. 

There are two PI controllers used in the strategy. The 
generator side three-phase converter uses a PI control 
strategy and works as a driver controlling the generator 
operating at optimum rotor speed 𝜔!"# to obtain maximum 
energy from wind [13]. 𝜔!"# is approximated as 𝜔!"# =
0.1874𝑣, [17] This represent the desired value of the shaft 
speed, for maximum power extraction [13]. 

The inner loops are constituted by two controllers, which 
regulate the d and q-axis of the stator currents. The 
electromagnetic torque may be controlled directly by the q-
axis current component 𝑖!, therefore the speed can be 
controlled by changing q axis current, and d-axis current 
component 𝑖! is set to zero to minimize the current and 
resistive losses for a given torque. The outputs from the two 
current controllers are the d and q-axis stator voltage 
references, which are sent to the sinusoidal pulse-width 

modulation (SPWM) block. The SPWM will generate the 
switching signals required by the IGBT elements of the 
converter. 

 

 
Fig. 2.  Block diagram of generator side converter control scheme. 

 

B. Grid side converter control 
The control scheme of this strategy is exhibited in Fig. 3. 

The main task of the grid side converter control is to supply 
a reliable electric power to the consumers, regulating 
converter output variables such as voltage and frequency. 
Another function of controller is the constancy of the DC-
link voltage (DCLV), while controlling the active and 
reactive power. This action is attained through the phase 
angle and the amplitude of the VSC’s line current 𝑖! and 𝑖!. 
The feedback and feed-forward signals are first transformed 
to the d-q frame and then processed by compensators to 
produce the control signals. These control signals are 
transformed to the abc-frame and sent to the grid side 
converter. 

 

 
Fig. 3.  Block diagram of grid side converter control. 

The active power reference, 𝑃!_!"#, may be determined by 
examining the DC link dynamics. The power balance at the 
DC link is [18], 

 
Pc = Pg −Pn           (14) 

 
where 𝑃! is the power that goes through the DC link 
capacitor; 𝑃! is the generator’s active power output; and 𝑃! 
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is the active power transmitted from the DC link to the grid. 
The DCLV, 𝑉!", is determined as follows: 
 

dVdc
2

dt
=
2
C
Pc            (15) 

 
The active power reference, 𝑃!_!"#, is calculated by 

comparing the actual DCLV, with respect to the desired 
DCLV reference, 𝑉!"_!"#. This error is processed by a 
control scheme, the output becomes 𝑃!_!"#. 

V. NEURAL CONTROLLER TOPOLOGY 
The proposed can be achieved adding a B-spline neural 

network to update all gains in five PI controllers, generator 
and grid side. Each PI transfer function is given by  

 
U s( )
E s( )

=
ki
s
+ kp           (16) 

 
Thus, 𝑘! and 𝑘! are updated from a B-spline neural 

network at every sampled time. With this purpose, ten 
BSNN are assembled in the control scheme.  

A. B-spline neural network 
B-spline NN belong to a class of networks known as 

lattice-based Associative Memory Networks (AMN), used 
generally for functional approximation tasks. The network 
has a fixed structure and a set of adaptive parameters that are 
iteratively trained in order to achieve the desired behavior, 
with the option of carrying out such tasks on-line, and taking 
into account the power grid non-linearities. The on-line B-
spline associative memory network (AMN) adjusts its 
weights iteratively in an attempt to reproduce a particular 
function, whereas an off-line or batch B-spline algorithm 
typically generates the coefficients by matrix inversion or 
using conjugate gradient. B-spline AMNs adjust their 
(linear) weight vector, generally using instantaneous least 
mean square (LMS)-type algorithms, in order to realize a 
particular mapping, modifying the strength with which a 
particular basis function contributes to the network output. 
Through BSNN there is the possibility to bound the input 
space by the basis functions definition.  

The BSNN’s output can be described by [19], 
 
y = aTw

w = w1 w2 … wn
!
"

#
$

T

; a = a1 a2 … an!
"

#
$

T

;
(17) 

 
where 𝑤! and 𝑎! are the i-th weight and the i-th BSNN basis 
function output, respectively; 𝑛 is the number of weighting 
factors. 𝑖 refers to sub index that can take values from 1 to 𝑛 
(vector dimension); and 𝑛 represents the number of 
weighting factors, it depends on a particular application. In 
this case, only two weight’s factor was used to each ANN, 
Fig. 4. It allows diminish the computational effort with well 
system response. In this paper it is proposed that 𝑘! and 𝑘! 

be adapted through one BSNN, respectively, for each 
voltage source converter. The error signals are the same of 
PI controllers. Then the dynamic control parameters for back 
to back system can be described as follows: 

 
kx = NNm ex,wi( )          (18) 

 
where 𝑁𝑁! denotes the BSNN which is used to calculate 𝑘! 
and 𝑘!; 𝑤! is the corresponding weighting factor; m=1,2,3 
number of PI controllers. Fig. 4 depicts a scheme of the 
proposed BSNN. 

The appropriate design requires the following a-priori 
information: the bounded values of 𝑒!, the size, shape, and 
overlap definition of the basis function. Likewise, with this 
information the BSNN estimates the optimal weights’ value. 
The neural network adaptive parameters, (17)-(18) are 
created by univariate basis functions of order 3, considering 
that 𝑒! is bounded within [-1.5, 1.5].  

 

 
 

Fig. 4.  Proposed BSNN for adapting 𝑘! and 𝑘! control 
parameters. 

 

B. B-spline learning 
Many neural network training rules are simply 

instantaneous algorithms (together with nonlinear variations) 
and in recent years there has been a growing interest in 
trying to understand what and how neural networks learn. 
The learning must be local, in that the parameters adapted 
should only affect the output of the network locally. 
Instantaneous learning rules are formulated by minimizing 
instantaneous estimates of a performance function, which is 
generally the Mean Square output Error (MSE), and the 
parameters are updated using gradient descent rules. The B-
spline network depends linearly on a set of weights, and they 
are these parameters, which are updated using the basic 
learning rules. 

On-line learning of continuous functions, mostly via 
gradient-based methods on a differentiable error measure is 
one of the most powerful and commonly used approaches to 
train large layered networks in general [20], and for 
nonstationary tasks in particular. In this application, the 
parameters' quick updating is looked for. While conventional 
adaptive techniques are suitable to represent objects with 
slowly changing parameters, they can hardly handle 
complex systems with multiple operating modes. The 
instantaneous training rules provide an alternative so that the 
weights are continually updated and reach the convergence 
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to the optimal values. Also, conventional nets sometimes do 
not converge, or their training takes too much time [20-21].  

In this paper, the BSNN is trained on-line using the 
following error correction instantaneous learning rule [19], 

 

wi = wi t −1( )+
ηei t( )
a t( ) 2

2 ai t( )        (19) 

 
where 𝜂 is the learning rate and 𝑒! (t) is the instantaneous 
output error. 

Respect to the learning rate, it takes as initial value one 
point within the interval [0, 1] due to stability purposes. This 
value is adjusted by trial-and-error. If 𝜂 is set close to 0, the 
training becomes slow. On the contrary, if it is large, 
oscillations may occur. In this application, it settles down in 
0.051 for 𝑘!, and 0.0016 for 𝑘!. The BSNN training process 
is carried out continuously on-line, while the weights’ values 
are updated. 

It is proposed that during the actualization procedure, a 
dead band is included to improve the learning rule 
convergence. The weighting factors are not updated if the 
error has a value below 0.1%, 

 

wi t( ) =
wi t −1( )+

ηei t( )
a t( ) 2

2 ai t( ), if ei > 0.0001

wi t −1( ), otherwise

"

#
$

%
$

   (20) 

 
This learning rule has been elected as an alternative to 

those that use, for instance, Newton’s algorithms for 
updating the weights that require Hessian and Jacobian 
matrix evaluation. Regarding the weights’ updating, (20) 
should be applied for each input-output pair in each sample 
time; the updating occurs if the error is different from zero. 

The parameters are chosen by trial-and-error, following 
the heuristic given in [19], which states that the simplest 
acceptable adaptive system produces the best results. The 
position of the knots is selected using a priori information 
about the system. The learning rate values are elected based 
on a compromise between fast learning and greater noise 
filtering. 

VI. TEST RESULTS AND ANALYSIS 
In order to demonstrate the feasibility of this proposition, 

a wind generation system is employed. Matlab are used for 
simulation. To analyze the results, simulations are developed 
under different scenarios with PI controllers tuned by BSNN 
(dynamic parameters). Some operating conditions are taken 
into account. The models of the medium-power (2.5 kW) 
rigid drive train PMSG based WECS shown in Fig. 1 are 
included in the simulations. 

Major system parameters are listed in Table I [13]. The 
power converter and the control algorithm are also 
implemented and included in the model. The sampling time 
used for the simulation is 20 µs. It is assumed that wind 
speed profile varies smoothly with step rate at different 
slopes, Fig. 5. The system is subjected to the following 

sequence of events: until 𝑡 = 0.033 s, 𝑃!"# = 2400 W, 
𝑄!_!"# = 0. At t = 0.033 s, 𝑃!"# is subjected to a step change 
from 2400 to 1800 W. At 𝑡 = 0.66 s, 𝑃!"# is subjected to 
another step change from 1800 to −1500 W and 𝑄!_!"# is 
subjected to step change from 0 to 100 VAR. 

 
TABLE I 

PARAMETERS OF PMSG WIND POWER SYSTEM. 
Blade length 
Multiplier ratio 
Efficiency 
HSS inertia 
No. of pairs of poles 
Armature resistance 
Stator inductance 
Magnetic flux Linkage 

R = 2.5 m  
7 
η=1 
J=0.5042 kg m2 

3 
3.3 Ω 
Ld=Lq=41.56 mH 
ψm = 0.4382 Wb 

 
 
Fig. 6 shows the simulation result of DC link voltage with 

the proposal and considering fixed parameters. Fig. 7 
exhibits the dynamic behavior of the reactive power at DC 
link bus. The transient response is diminished in terms of the 
overshot without parameters update. The adaptive neural 
network PI exhibits very well performance adapting itself to 
the new conditions. Fig. 7 illustrates that 𝑃! and 𝑄! rapidly 
track 𝑃!_!"# and 𝑄!_!"#, respectively. 

Fig. 8 shows the instantaneous currents under load 
variations. The load current is changing respect to the load 
variations as expected. There is no significant rise in the 
current waveform during the transient. The adaptive 
controller parameters performance can decrease the 
oscillations amplitude and transient time under different 
operating conditions, respect to the behavior with fixed 
control parameters. 

 

 

Fig. 5.  Wind speed variation. 

 
Fig. 6.  DC link voltage performance. 
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Fig. 7.  Active and reactive power in WECS terminals. 

The aim of the paper is to show the performance of 
adaptive PI parameters as a mean to enhance VSC 
performance. In order to attain such purposes a BSNN is 
proposed. With this neural adaptive scheme, the possibility 
to implement the on-line updating parameters is potential 
due to it has learning ability and adaptability. 

Unlike the conventional technique, the BSNN exhibits an 
adaptive behavior since the weights can be adapted on-line 
responding to inputs and error values as they arise. 

 

 
Fig. 8.  Instantaneous output line current. 

VII. CONCLUSION 
The aim of this paper is to show the performance of 

adaptive PI parameters as a mean to tune linear controllers in 
WECS system. In order to attain such purposes a B-spline 
neural network-based is proposed. With this neural adaptive 
scheme, the possibility to implement the on-line updating 
parameters is potential due to it has learning ability and 
adaptability, robustness, simple algorithm and fast 
calculations This is desirable for practical hardware 
implementation in power stations. 
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