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Abstract 

This paper presents the speed neural control of a shunt-
connected DC motor. The rotor speed of the DC motor can 
follow an arbitrarily selected reference. The purpose is to 
achieve accurate reference control of the speed, especially 
when motor and load parameters are unknown. For this task, 
an on-line B-spline neural network is proposed due to its 
simple structure, adaptability, and robustness, taking into 
account the unknown nonlinear dynamics of the DC motor 
and load. Laboratory tests demonstrate the applicability of the 
proposition compared with the conventional PI control 
scheme. The performance of the resulting system has been 
tested on a 120 V, 2.8 A, 188.49 rad/sec DC motor. 

1 Introduction 
Traditionally motor control systems have contained only 
electromechanical components, where all connections are 
hardwired. Even today, these components remain the 
workhorses of control systems, but advances in solid-state 
technology and intelligent devices have allowed the 
emergence of equipment that could be programmed to do 
more than just turn a motor on and off. Such components 
include variable-frequency drives, solid-state starters, and 
electronic-overload relays [1-3]. The integration of software 
and intelligent devices into motor control systems can deliver 
improved diagnostics, early warnings for increased system 
reliability, design flexibility, and simplified wiring [4-6]. 
Such benefits can help to reduce maintenance costs and 
prevent unscheduled downtimes for electrical drive systems. 
There are some rotational mechanical loads, which require a 
wide range of operating speeds. Suitable operating 
characteristics to provide a given range of load torques and 
speeds might be provided by several forms [1-5, 7]. However, 
they are mainly focused on conventional linear control 
schemes, for instance the PI control design based on a 
linearized model, which cannot guarantee its performance 
under diverse operating conditions. 
The use of artificial neural networks (ANNs) offers an 
attractive alternative for the DC motor control. The ANNs are 
able to model and control on-line nonlinear and non-
stationary systems. The ANNs’ nature makes them robust, 

adaptive, optimum, and hybrid control techniques, with 
attractive features to motor systems control [8-9]. At the same 
time, the control techniques must consider the complexity of 
practical systems, and to provide a realistic control model 
with less computation time for effective robust control over a 
wide range of operating conditions. The B-spline neural 
networks offer all of them characteristics. In this paper a B-
Spline Neural Network (B-SNN) is employed for the rotor 
speed control in face of load and speed changes. 
This paper is organized as follows; section II presents the 
motor dynamic model. In section III, a brief description of the 
identification parameters of DC motor is exposed. B-spline 
neural network and the control strategy are discussed in 
section IV. Section V summarizes the laboratory 
implementation and VI the obtained results compared with 
conventional PI control, on a shunt-connected DC motor. 

2 Motor Dynamics 

An equivalent circuit diagram of the DC motor (shunt 
connected) driving a three-phase generator is shown in Figure 
1. The voltage and mechanical equilibrium equations are as 
follows, 
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where ω is the rotor speed, rad/sec; J is the moment of inertia, 
kg.m2; Ra and Rf are the armature and field resistances, Ω; La 
and Lf  are the armature and field inductances, H; ia and if  are 
the armature and field currents, A; va = vf is the motor’s 
armature voltage, V; ea is the back emf, V; Te is the electric 
torque, N.m; B is the viscous friction coefficient, N.m.s; TL is 
the load torque. 
The back emf can be expressed proportionally to speed, 
 

ωaa ke =   (4) 
 

where ka is the armature constant, and is related with the 
motor’s physical properties, for instance, magnetic field 
strength, number of coils, etc., [2]. The electrical torque 
becomes 
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   aae ikT =   (5) 
 

It is assumed that the magnetic field is constant and 
proportional to the field current; thus 
 

fafa iLk =   (6) 
 

Laf is the mutual inductance between the field and armature 
windings, H. 
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Figureure 1. Equivalent circuit diagram of the DC motor. 
 
Equations (1)-(6) describe the DC motor behaviour and have 
been used to estimate the machine parameters. The 
mathematical model is employed for analysing and simulating 
the proposed neural control strategy. 

3 Parameters Estimation 

The major motor parameters to estimate are the armature and 
field resistances, the armature and field inductances, the 
moment of inertia, and the mutual inductance. The following 
procedure has been employed to evaluate them. 
The nominal values of the motor under study are: 120 V, 2.8 
A, and 188.49 rad/sec. The motor is loaded by an AC three-
phase generator whose nominal values are: 120 V, 0.33 A and 
188.49 rad/sec, where a balanced three-phase resistive load is 
connected, Figure. 1. 
Firstly, the voltage and current measurement at full load is 
accomplished, given the following information 
 

8.111== fa vv  V,      22.1=ai  A 

238.0=fi  A,      1800=ω  rpm 
 
To calculate the resistances of both windings it is assumed 
that the motor has two DC circuits (field and armature) feed 
by one DC source connected through a series resistance. 
Thus, such parameters can estimated by measuring 
individually the voltage and current on each winding, under 
different applied DC voltage values, and then fulfilling an 
extrapolation of the resulting values to estimate the best ones. 
The rheostat field is included into the resistance of the field 
winding. The maximum voltage applied to the armature 
winding is such that the nominal current, 2.8 A, is drawn. 
Thus, the following parameters result 
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Similarly, to evaluate the armature and field inductances, two 
circuits are taking into account, although in this case they are 
feed by an AC source. The above procedure is repeated for 
obtaining the values of the inductances; in this case, both 
magnitudes and phase between the AC voltage and current 
signals are measured, and then the following relationships are 
utilized, 
 

R
X

=θtan ,  jXRZ +=   (7) 

 
where θ is the shift phase between the sinusoidal voltage and 
current waveforms present in the AC circuit; Z is the 
impedance in Ω; R is the resistance in Ω; and X is the 
reactance en Ω. It is assumed that the resistance R is available 
from the above-mentioned results. For the inductive circuit 
the inductance is defined as, 
 

LfXL π2=   (8) 
 
If the shift angle and resistance are known, the inductance can 
be evaluated from Equations (7)-(8). Therefore, 
 

4080.2=fL  H,  3.55=aL  H 
 
The mutual inductance, Laf, is estimated through the steady 
state measurements related with Equations (2)-(6), becoming 
 

2881.2=afL  H 
 
To establish the moment of inertia, J, first the inertia constant 
in seconds, H, is calculated under the following swing 
equation approximation [2-3] 
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where H is defined as 
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H
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being SB the nominal motor power in VA, and ω is the 
nominal speed in rad/sec. 
To infer the slope Δω /Δ t , we propose to approximate this 
value by mean of the measured velocity when the voltage is 
disconnected with the motor at full load. Figure 2 depicts the 
measured speed evolution; both motor’s and generator’s 
inertias are included. The measurement is employed to 
evaluate the slope in a least-squares sense. Applying the 
motor values previously obtained, 
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Figure 2. Motor speed evolution at full load. The voltage is 
disconnected at t = 1.91 s. 
 
Therefore, the motor parameters are estimated by the above 
mentioned procedure, and they have been used for studying 
the system control performance before the neurocontroller is 
built. 

4 Neurocontroller 

The output power developed by a DC motor is proportional to 
the product of the shaft torque and the shaft rotational speed. 
The value of the developed torque usually varies 
automatically to satisfy the demand of the load torque plus 
any torque associated with friction and wind age. The 
increment of the shaft power due to the load torque increment 
is usually supplied by an automatic increase of the motor’s 
current. Any significant change in motor speed, however, 
must be obtained in a controlled manner by making some 
adjustment to the motor or to its electrical supply. Within 
limits, as can be seen from Equations (1)–(5), the operating 
speed of a shunt-connected DC motor may be controlled in a 
straightforward manner by varying the armature voltage va. 
In the following, the operating speed of the shunt-connected 
DC motor is controlled by modulating voltage, va. The 
voltage control system is based on a PWM scheme, where the 
control signal is α, Figure 3. 
Thus, an adaptive control law which considers the nonlinear 
nature of the plant and load, and that can be adapted to the 
changes in the environment and parameters is required for 
regulating the motor velocity. Therefore, in this paper a B-
spline neural control is proposed. 
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Figure 3. Speed control loop of the shunt-connected DC 

motor 
The B-spline neural networks (B-SNN) are a particular case 
of neural networks that allow to control and model systems 
adaptively, with the option of carrying out such tasks on-line 
and taking into account the system non-linearities. 
Additionally, through B-SNN there is the possibility to bound 
the input space by the basis functions definition. 
The input space of this type of ANN is normalized by a lattice 
on which the basis functions are defined. Only a fixed number 
of basis functions participate in the network’s output; and 
then not all the weights have to be calculated each time step, 
thus reducing the computational effort and time [10]. 
The controller provides a suitable voltage to the armature 
through a B-spline neural net. With this purpose, the input 
signal ey is utilized for controlling va, Figure 4. The B-SNN 
output can be described by, 
 

=y  aT w  (10) 
 
and 
 

w Tww ][ 21= ,                         a Taa ][ 21=  
 
where wi y ai are the i-th weight and the i-th B-SNN basis 
function output, respectively. 
In this paper, the neurocontroller is constituted by two basis 
functions, Figure 4. The error, ey, between the reference speed 
and the actual, is the input for controlling va. 
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Figure 4. Proposed B-SNN controller. 
 
In order to define a lattice of the input space, a set of M knot 
vectors must be specified, one knot vector for each input axis. 
These knot values give the positions of the (M-1)-dimensional 
hyperplanes which are parallel to the other (M-1) axes, and 
the set of all the hyperplanes generates the lattice in the input 
space. There are usually a different number of knots on each 
axis and they are generally placed at different positions. More 
specifically, a knot vector must be specified for each input 
axis, and consists of interior and exterior knots. Given a knot 
vector, Fig 5, we can define a univariate basis function. For 
more details in modelling and control systems with B-spline 
neural networks see [10-11]. 
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Figure 5. A knot vector on a one-dimensional input space. 
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The neurocontroller, Equation (10) is created by two 
univariate basis functions of order 3, considering that ey is 
bounded within [-6.0, 6.0], Figure 6. 
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Figure 6. Univariate B-spline basis functions of order 3. 
 
In this paper, the neurocontroller is trained on-line using the 
following error correction instantaneous learning rule [10] 
 

( ) ( )
( )

( )
( )ta

t

te
twtw i

y
ii 2

2

1
a

η
+−=   (11) 

 
where: η  is the learning rate and ( )tey  is the instantaneous 
output error. 
The learning rate has to be tuned for obtaining a smooth 
response and its value can be: 0 < η < 2, resulting from an 
autocorrelation matrix analysis, [10]. The learning is stable if 
and only if the learning rate satisfies the previous condition. 
The basis functions are defined from the knot vector 
considering the input bound, and the order due to the 
network’s output become smoother as the order increases. 
The instantaneously trained neural networks possess 
generalization characteristics [12]. An instantaneously trained 
neural network must, by definition, convert the incoming 
pattern into corresponding weights without intensive 
computations. Therefore, B-spline neural networks offer an 
attractive alternative and in this paper are implemented with 

continuously on-line trained, Equation (11), for controlling 
the DC motor speed. 

5 Laboratory Implementation 

The speed measurement is made via a tachometer, and the 
instantaneous value is captured using the microcontroller 
MC68HC908QY4CP, who communicates with the computer. 
Manipulation of the armature voltage, va, is performed 
through an adjustable source that is constructed by insulated 
gate bipolar transistors (IGBTs). To reduce the high 
frequency harmonics of the pulse width modulation, (PWM) 
scheme low pass filter is added at the source side. The 
schemes based on pulse width modulation are widely used in 
the handling of voltage source converter through proper 
management of power electronic switches. 
The strategy is based on PWM technique, that pulses are low 
power signals from a controller. In this work, a digital PWM 
is used, so that the voltage of the pulses is maintained 
constant during the change in pulse width. 
The PWM comparator is constructed by generating the signal 
handling switches. The comparator sends a signal to close the 
switch when the modulated signal (sinusoidal signal) is larger 
than the carrier otherwise the switches are open. In this case, 
the carrier signal is triangular, and the frequency of the PWM 
depends the modulated signal, which acts as a reference 
signal. 
Therefore, the PWM control strategy is implemented by a 
microcontroller, where the control signal is generated using a 
B-spline neural scheme which keeps the armature voltage on 
the courage to take engine speed at the desired reference 
value, Figure 3. 

6 Test Results 

In order to evaluate the speed regulation, digital simulations 
and laboratory tests are accomplished using the DC motor 
arrangement described in Figure 1, under different 
disturbances. 
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Figure 7. DC motor control scheme by B-spline controller. 
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The following scenarios are included: a) simulation with B-
SNN controller (NNC-M); b) laboratory tests with B-SNN 
controller (NNC); c) laboratory tests with conventional PI 
control (CONV). The Matlab-Simulink® is employed for 
simulating. For simplicity the load in simulation study is 
represented proportional to velocity as 
 

ωLL BT =  
 
where the constant BL is calculated by trial and error 
procedure, considering the current and voltage measured in 
laboratory tests in steady state with different load values. 
Figure 7 displays the DC motor control system model 
controlled by the B-spline neural networks. 
To study the proposed controller analyzes three cases, when 
the reference value is changed, Figure 8. Figure 9 shows the 
performance of the speed when the load is switched off, and 
finally, in Figure 10 is seen the speed evolution when the load 
is reconnected. 
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Figure 8. Tracking performance for starting DC motor from 
110 to 188.49 rad/s. 
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Figure 9. Tracking performance when load is turn off and set 
point is 188.49 rad/s. 
 
The NNC has the ability of being updated to a new operating 
condition, improving the CONV performance. In contrast to 
the NNC, the CONV control technique has a slower response. 
Discrepancies with simulations are due to a rough estimation 
of parameters. 
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Figure 10. Tracking performance when load is turn on and set 
point is 188.49 rad/s. 
 
The performance and applicability of the proposition are 
proved by hardware implementation on a laboratory DC 
motor. This strategy allows controlling appropriately the 
motor speed where the load and set point is modified. 
The NNC and CONV scenarios are compared and can be 
concluded that, while the neural control is able to adapt by 
itself to different operating conditions, the performance of the 
CONV turns out to be diminished in some situations, 
especially under different operating conditions for which its 
parameters have been tuned. Thus, the feedback signals to the 
NNC are pertinent for a suitable control of the DC motor 
(shunt connected) velocity exhibiting a well performance for 
different operating points without modifications in control 
law. 
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