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Abstract 

Permanent Magnet Synchronous Motors (PMSM) have been 
used as variable speed drives, especially for speed control and 
position. This work present the performance of a B-Spline 
Neural Network (BSNN) scheme to adjusting the rotor speed 
of PMSG and estimation the load torque. The B-spline neural 
network is an efficient tool to implement the adaptive control 
speed and estimation of load torque, with the possibility of 
carrying out this task on-line, taking into account the systems 
non-linearities. One of the main tasks within is adjust the 
proportional-integral parameters for speed rotor controller. In 
this work, a neural network algorithm solves this. Results 
show that the proposed coordination scheme is comparable 
with an inner-loop sliding mode current control scheme, 
without requiring a strict model analysis. A nonlinear 
observer is designed for estimation of the rotor speed and load 
torque. To illustrate the performance of the proposed 
controller, the simulation studies are presented separately for 
the BSNN and sliding mode control. The results are compared 
with each other and discussed in detail. 

1 Introduction 

Nowadays PMSM has been receiving increased attention for a 
wide variety of industrial applications, due to its considerable 
advantages such as high efficiency, high power factor, 
superior power density, small size, simple mechanical 
construction, easy maintenance, good reliability large torque 
to inertia ratio and long life over other kinds of motors such 
as DC motors and induction motors [1,2]. However, one 
disadvantage of PMSM is the need for a more complex 
controller for high performance electric drive applications 
owing to its highly nonlinear characteristics. Conventional 
fixed gain PI, PID controllers are widely used for the reasons 
of simplicity and applicability in most industrial drive 
applications [1,3].  
 
The control strategies based on recent modern control theories 
are put forward to meet high performance application 
requirements of industrial drive applications. Different 
authors present some control techniques such as nonlinear 

control [4,5], adaptive control [6,7], disturbance observer-
based control [8], predictive control [9], sliding mode control 
[10,11], robust control [12,13], have been developed to 
overcome these problems for speed and position control of 
PMSM. 
 
The standard controller for a PMSM is a vector-based cascade 
arrangement that uses Proportional plus Integral (PI) action. 
The inner-loop PI controllers are used to regulate the d–q axis 
current and the outer-loop PI speed controller produces the q-
axis current command for the inner loop q-axis current 
controller. When a conventional PI control is used, the 
parameters have to be tuned, with a linear technique and the 
parameters are fixed. The performance of the system can only 
be assured around the operating point for which the 
parameters were adjusted. On the other hand, using the 
parameters from PI scheme like input for an adaptive 
technique, some author mixed neural networks and PID 
techniques to strengthen the linear controller. In [14] and [15] 
a back propagation neural networks was used to adjust 
coefficients KP, KI, and KD of PID controllers attaining power 
regulation of wind turbines. Optimal PI coefficients are 
obtained using genetic algorithms [16]. In [17] a BSNN is 
used to estimate the best power system stabilizer’s parameters 
and adjust the proportional-integral parameters for reactive 
power provision.  
 
Conventional fixed gain PI, PID controllers are widely used 
for the reasons of simplicity and applicability in most 
industrial drive applications [18]. The objective is to 
adaptively adjust the gains in accordance to the external and 
internal disturbances. This is achieved by a strategy to update 
conventional PI’s currently operating in specific plant 
parameter’s that were tuned time ago. These work proposed a 
good adaptive technique based on BSNN to change the 
coefficients KP, and KI, of PI controllers from PMSM. The 
main idea is to re-tune basically the PIs gains through an 
online procedure, which involve a few measurements. To 
illustrate the performance of the proposed controller, the 
simulation studies are presented separately for the BSNN and 
sliding mode control. 
 
The paper is organized as follows. The model of the 
permanent magnet synchronous motor is given in Section 2. 
Then, the control algorithms, which are used to control speed 
of the PMSM, are given in Section 3. The Section 4 
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comprises the simulations results and discussion about the 
results. The achievements obtained with the proposed 
controller are interpreted in the last section. 

2 Mathematical model of PMSM 

The mathematical model of a typical surface mounted PMSM 
can be described in the d–q frame as follows [19]: 

Ld
did
dt

= −Rsid + PLqiqω + vd  (1) 

Lq
diq
dt

= −Rsiq − P Ldid +ψ( )ω + vq  (2) 

where vd, vq, id and iq are the d-q axis voltages and currents, 
respectively; Rs is the stator resistance; Ld and Lq are the d-q 
axis inductances; p is the number of pole pairs; ω is the 
generator rotational speed; ψ is the permanent magnetic flux. 
The electromagnetic torque is obtained as 

Te =
3
2
p ψmiq + Ld − Lq( )idiq"# $%  (3) 

When the permanent magnets are mounted on the rotor 
surface, then Ld=Lq, therefore the electromagnetic torque is, 
Te=piqψ. The complete mathematical description includes 
also the mechanical equation given by 

dω
dt

=
P
2
Te −Tl( )
J

   (4) 

where J is the moment of inertia and Tl is the load torque. 
From equations above, it is understood that PMSM is a highly 
nonlinear system owing to the cross-coupling between 
electrical current and speed state equations. It should be noted 
that all the parameters vary with operating conditions; 
primarily the applied load torque disturbance and temperature 
[1,10]. 

3 Design of the controller 

Figure 1 shows a schematic diagram of a variable-frequency 
VSC system to control the PMSM. The control system 
consists by the following parts: a PMSM, a sinusoidal pulse 
width modulation (SPWM), torque controller in dq frame and 
voltage source inverter (VSI). The control goal is to design an 
asymptotically stable speed controller for PMSM to make the 
rotor speed track the reference trajectory correctly under 
different parameter perturbations and load torque disturbance 
variation. Hence, the main control error can be defined as  

e =ωr −ω   (5) 
where ωr is the reference signal. Having two inputs vd and vq, 
we can choose other additional output to be controlled: the 
current id. Thus, we define the following auxiliary control 
error 

ed = idr − id   (6) 
where ir is the reference constant signal for the current id. The 
absence of d-axis stator current there is no reluctance torque 
and only the q-axis reactance is involved in finding the 
terminal voltage, i.e. there is no direct magnetization or 
demagnetization of d-axis, only the field winding acts to 
produce flux in this direction, we chose the reference signal in 
(1) as idr=0. For this situation, the field current in the d-axis 

and the stator current in the q-axis are 90° apart as is the case 
in the dc machine. 
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Figure 1: Block diagram of the control system for the PMSM. 
 
Introducing the two new control variables as [20] 

ud = PLqiqω + vd   (7) 

uq = −P Ldid +ψ( )ω + vq  (8) 
we can simplify (1) and (2) as follows 

Ld
did
dt

+ Rsid = ud   (9) 

Lq
diq
dt

+ Rsiq = uq   (10) 

We can see that (9) and (10) are two decoupled systems of 
first grade. Therefore, two independent feedback loops can be 
employed to control id and iq, as shown in Figure 2. There are 
two PI controllers used in the strategy. The inner loops are 
constituted by two controllers, which regulate the d and q-axis 
of the stator currents. The electromagnetic torque may be 
controlled directly by the q-axis current component iq, 
therefore the speed can be controlled by changing q axis 
current, and d-axis current component id is set to zero to 
minimize the current and resistive losses for a given torque. 
[21]. The outputs from the two current controllers are the d 
and q-axis stator voltage, which are sent to the sinusoidal 
pulse-width modulation (SPWM) block. The SPWM will 
generate the switching signals required by the IGBT elements 
of the VSI. This article proposes the use of adaptive PI 
controllers to regulate the speed rotor a desired value under 
load and parametric variations. This can be achieved adding a 
B-SNN to update KP and KI gains in the two PI controllers 
(Figure 2), where each PI transfer function is given by 

U s( )
E s( )

=
KI + sKP

s
  (11) 

Thus, KP and KI are updated from a B-SNN at every sampled 
time.  

3.1 Reference current iq 

Differentiating (5) with respect to time, we have 
de
dt
=
dω
dt

−
dωr

dt
=
P
2
3
2
pψmiq
J

−
dωr

dt
  (12) 
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To assign the desired dynamics for e as 
de
dt
= −c1e  (13) 

with c1>1, we choose the fictitious control iqr  in the first as 

iqr =
2
P

dωr

dt
J
km
+
Jc1e
km

!

"
#

$

%
&+

Tl
km

 (14) 
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Figure 2: The closed loop speed control of PMSM with B-
SNN. 

3.2 B-spline neural network 

The major advantages of the ANNs are the controller’s design 
simplicity, their compromise between the complexity of a 
conventional non-linear controller, and its performance. The 
B-SNNs are a particular case of neural networks that allows 
the control and modelling of systems adaptively, with the 
option of carrying out such tasks on-line and taking into 
account the PMSM non-linearities. 
 
B-spline NN belong to a class of networks known as lattice-
based Associative Memory Networks (AMN), used generally 
for functional approximation tasks. The network has a fixed 
structure and a set of adaptive parameters that are iteratively 
trained in order to achieve the desired behavior, with the 
option of carrying out such tasks on-line, and taking into 
account the power grid non-linearities. The on-line B-spline 
associative memory network (AMN) adjusts its weights 
iteratively in an attempt to reproduce a particular function, 
whereas an off-line or batch B-spline algorithm typically 
generates the coefficients by matrix inversion or using 
conjugate gradient. B-spline AMNs adjust their (linear) 
weight vector, generally using instantaneous least mean 
square (LMS)-type algorithms, in order to realize a particular 
mapping, modifying the strength with which a particular basis 
function contributes to the network output. Through BSNN 
there is the possibility to bound the input space by the basis 
functions definition.  
 
The BSNN’s output can be described by [22], 
y = aTw

w = w1 w2 ! wn
!
"

#
$; a = a1 a2 ! an!

"
#
$;

(15) 

where wi and ai are the i-th weight and the i-th BSNN basis 
function output, respectively;  is the number of weighting 
factors. i refers to sub-index that can take values from 1 to n 
(vector dimension); and n represents the number of weighting 
factors, it depends on a particular application. In this case, 
only two weight’s factor was used to each ANN, Fig. 3. It 
allows diminish the computational effort with well system 
response. In this paper it is proposed that KP and KI be 
adapted through one BSNN, respectively, for each voltage 
source converter. The error signals are the same of PI 
controllers. Then the dynamic control parameters for the 
PMSM can be described as follows: 

Kx = NNm ex,wi( )   (16) 
where NNm denotes the BSNN which is used to calculate KP 
and KI; wi is the corresponding weighting factor; m=1,2,3 
number of PI controllers. Fig. 3 depicts a scheme of the 
proposed BSNN. 
 
The appropriate design requires the following a-priori 
information: the bounded values of ex, the size, shape, and 
overlap definition of the basis function. Likewise, with this 
information the BSNN estimates the optimal weights’ value. 
The neural network adaptive parameters, (15)-(16) are created 
by univariate basis functions of order 3, considering that  is 
bounded within [-1.5, 1.5]. 
 
 
 
 
 
 
 
 
 
 
Figure 3: Proposed BSNN for adapting KP and KI control 
parameters. 

3.3 B-spline learning 

Many neural network-training rules are simply instantaneous 
algorithms (together with nonlinear variations) and in recent 
years there has been a growing interest in trying to understand 
what and how neural networks learn. The learning must be 
local, in that the parameters adapted should only affect the 
output of the network locally. Instantaneous learning rules are 
formulated by minimizing instantaneous estimates of a 
performance function, which is generally the Mean Square 
output Error (MSE), and the parameters are updated using 
gradient descent rules. The B-spline network depends linearly 
on a set of weights, and they are these parameters, which are 
updated using the basic learning rules. 
 
On-line learning of continuous functions, mostly via gradient-
based methods on a differentiable error measure is one of the 
most powerful and commonly used approaches to train large 
layered networks in general [23], and for nonstationary tasks 
in particular. In this application, the parameter’s quick 
updating is looked for. While conventional adaptive 
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techniques are suitable to represent objects with slowly 
changing parameters, they can hardly handle complex 
systems with multiple operating modes. The instantaneous 
training rules provide an alternative so that the weights are 
continually updated and reach the convergence to the optimal 
values. Also, conventional nets sometimes do not converge, 
or their training takes too much time [23].  
 
In this paper, the BSNN is trained on-line using the following 
error correction instantaneous learning rule [22], 

wi = wi t −1( )+
ηei t( )
a t( ) 2

2 ai t( )  (17) 

where η is the learning rate and ei(t) is the instantaneous 
output error. 
 
Respect to the learning rate, it takes as initial value one point 
within the interval [0, 1] due to stability purposes. This value 
is adjusted by trial-and-error. If η is set close to 0, the training 
becomes slow. On the contrary, if it is large, oscillations may 
occur. In this application, it settles down in 0.071 for KP 
0.0019 for KI. The BSNN training process is carried out 
continuously on-line, while the weights’ values are updated. It 
is proposed that during the actualization procedure, a dead 
band is included to improve the learning rule convergence. 
The weighting factors are not updated if the error has a value 
below 0.1%, 

wi t( ) =
wi t −1( )+

ηei t( )
a t( ) 2

2 ai t( ), if ei > 0.0001

wi t −1( ), otherwise

"

#
$$

%
$
$

 (18) 

This learning rule has been elected as an alternative to those 
that use, for instance, Newton’s algorithms for updating the 
weights that require Hessian and Jacobian matrix evaluation. 
Regarding the weight’s updating (18) should be applied for 
each input-output pair in each sample time; the updating 
occurs if the error is different from zero. 
 
The parameters are chosen by trial-and-error, following the 
heuristic given in [22], which states that the simplest 
acceptable adaptive system produces the best results. The 
position of the knots is selected using a priori information 
about the system. The learning rate values are elected based 
on a compromise between fast learning and greater noise 
filtering. 

3.4 Sliding Mode Control 

The control strategy is to design a controller to track the 
desired signals that are normally provided by an outer-loop 
speed controller, as shown in the Fig. 4. If we are able to 
make the current component id=0, we have some benefits. 
Select the control voltages as [10] 

ud = u0dsign Sd( )   (19) 

uq = u0qsign Sq( )   (20) 
where u0i are the maximum values of control signals, Sd = ed 
and Sq=iqr - iq. As stated previously, we consider the stator 

currents are measured signals. Nevertheless, the rotor speed 
and load torque can be estimated by means of the nonlinear 
observer described by 

dω̂
dt

=
τ piq
J

−
T̂l
J
−Kωeω   (21) 

dT̂l
dt

= kleω    (22) 

where eω =ω −ω̂  and τ p =1.5Pψm . Thus, the nonlinear 
observer (21-22) can be seen as a linear system with time 
varying parameters when the currents id and iq are assumed to 
be known functions. The resulting estimates ω and Tl are 
employed in the control law (7-8) and (19-20). 
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Figure 4: Block diagram of the speed control of a PMSM with 
Sliding Mode Technique 

4 Simulation results 

The simulations were performed in a personal computer to 
demonstrate the effectiveness of the proposed control 
algorithms. Throughout, the synchronous motor was modelled 
using (1-4) with parameters of the synchronous motor with a 
rated power of 1 Kw, that shows the table 1. The block 
diagram of the overall control system is depicted 
schematically in Fig. 1. 
 

HSS inertia: J=3.5x10-5 kg m2 
Rs is the stator resistance 2.6 Ohms 
No. of poles p=2 
Stator inductance Ld=Lq=6.73 mH 
Magnet flux linkage ψm=0.319 Wb 
Rated Voltage 120 volts 

 
Table 1: Parameters of the synchronous motor 
 
The controller gain in (13) was adjusted to c1=2900, and the 
no lineal observer gains in (24) were chosen as Kω =850 y Kl 
=-7. All initial conditions of the motor and the observer are 
set to zero. In the simulation the speed of the loaded motor is 
required to reach first its rated value 150 rad/seg with a load 
torque of 0.5 N-m², at 0.4 seconds ωr is subjected to a step 
change from 150 to 50 rad/seg, at 0.04 seconds ωr is 
subjected to a step change from 150 to 50 rad/seg, at 0.11 
seconds ωr is subjected to another step change from 50 to -50 
rad/seg, at 0.15 seconds ωr is subjected to a step change from 
-50 to 20 rad/seg and finally 100 rad/seg after the 0.2 seconds, 
as show Fig. 5. 
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At 0.05 seconds the load torque is increased up to 1 N-m², 
which is 100% greater than the initial value, at 0.095 seconds 
Tl is subjected to a step change from 1 to 0.6 N-m², at 0.13 
seconds Tl is subjected to another step change from 0.6 to 0.8 
N-m² and finally 1.1 N-m² after the 0.23 seconds; as watch 
Fig. 6. 
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Figure 5: Motor speed reference (dotted line) and speed 
estimated (solid line). 
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Figure 6: Motor speed reference (dotted line) and load 
estimated (solid line). 
 
An important issue of the electrical drives is the capability to 
reject the effects of load disturbances. Figure 7-8 shows the 
responses when a step load torque Tl is suddenly applied after 
running up. With a maximum speed change of only 1 rad./sec. 
the speed velocity of rotor returns to desired value within 0.01 
sec. as show in fig. 7. This reveals that the performance of the 
overall system is robust to the load disturbance. 
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Figure 7: Speed tracking response under load torque 
disturbance variation.  

5 Conclusions 

A sliding mode controller is proposed exhibiting robust 
stability and performance when the plant experiences larges 
disturbances. An effectiveness robust nonlinear speed control 
scheme for a PMSM which guarantees the robustness in the 
presence of parameter variations. To show the validity of 
proposed control scheme experimental works have been 
carried out under various conditions. Compared with the 
conventional nonlinear control scheme, the proposed robust 
nonlinear control scheme provides good transient responses 
under the load torque and rotor speed desired variations. It is 
design is demonstrated through simulations. 
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Figure 8: Dynamic performance of the current in q axis under 
different rotor speed and load torque disturbance variation. 
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