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Abstract—In this work we propose to implement a route
generation algorithm during the process of creating autonomous
maps by means of a mobile robot. The problem to solve is to auto-
matically obtain the optimal route in an unknown environment to
explore and map the entire environment. The main contributions
of this work are: the formulation of the optimization problem, the
analysis of the proposed image to implement the evaluation of the
objective function and the comparison of different optimization
techniques applied to this problem in experimental tests. The
platform used for the implementation is the open source robot
called TurtleBot2, the proposed algorithm was implemented in a
ROS node (Robot Operating System) that works in parallel to
the mapping and odometry programs already included in this
operating system.

Index Terms—Trajectory Generation, Heuristic Optimization,
Genetic Algorithms, Mobile Robots.

I. INTRODUCTION

The aim of robots is to help or replace people in hazardous
tasks [1] or repetitive tasks or those that require high precision
[2]. Initially the field of application of robots was restricted
to manufacturing processes [3], today the work of robots has
expanded to a large number of areas including medicine [4],
security [5], inspection, etc. These new fields of application
involve more complicated challenges because the work area is
usually changing, sometimes unknown, in addition to a variety
of environments such as water, land and air.

If it is desired that a robot replace a person within its own
environment, it will be necessary for the robot to have the same
abilities of a human. This is a complicated task that requires
solving different problems such as environment representation
[6], [7], automatic generation of trajectories [8], detection of
obstacles [9], communication between agents [10], etc.

Sometimes the environment in which the robot develops is
so complicated that it is necessary the intervention of a person
to make decisions at appropriate times to avoid accidents
or errors in operation, this type of operation is known as
teleoperation [11]. There are situations in which it is not
possible to teleoperate a robot either due to environmental
limitations (underwater or closed environments) or limitations
of communications due to natural disasters.

Autonomous robotics, on the other hand, tries to provide the
robots with the necessary capabilities to solve the problems
they face on their own. This may involve the use of advanced

learning techniques [12]. This work focuses on the problem
of autonomous navigation for maps creation in closed indoor
environments through the autonomous trajectories generation.

Currently is possible to find many works on this topic as
in [13], also in [14], another approach found in [15] and
[16]. In this work it is proposed that the mobile robot be
able to complete the following tasks: 1. Identify zones of
interest to search in an image (map) and areas to be avoided in
closed indoor environments. 2. Generate an optimal trajectory
for the robot, based on vision systems and inertial sensors.
The autonomous trajectories generation is approached as an
optimization problem with restrictions. The objective is to
minimize the distance between the points in the proposed
trajectory and the unknown areas on the map.

The mapping process is iterative, the proposed algorithm
starts with an initial partial map which is used to build the
optimal trajectory, and then the robot is moved along this
trajectory after that new points are added to the map from
the new location. The process is completed when there are
no more unknown locations in the map. The comparison of
different optimization techniques applied to this problem is
shown, including the random search method, the hill climbing
method and genetic algorithms. Comparison results of the
algorithms in experimental tests are shown, implemented on
the open source robot called TurtleBot2.

II. AUTONOMOUS NAVIGATION PROBLEM

As mentioned above there are many ways to solve the
problem of autonomous navigation, it is proposed to address
it as an optimization problem for which it is necessary to
clearly define the decision variables, the search space, the cost
function and the restrictions.

The purpose of the algorithm is to generate the trajectories
(paths) that allow the robot to navigate in the entire area
in which it is located to generate a complete map of the
surrounding environment.

The path of the robot P is described by a polynomial
parametric function of degree five defined by the following
equations:

x(t) = ax0 + ax1t+ ax2t
2 + ax3t

3 + ax4t
4 + ax5t

5

y(t) = ay0 + ay1t+ ay2t
2 + ay3t

3 + ay4t
4 + ay5t

5 (1)
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The six parameters of the equations 1 are calculated by
the next six conditions: the trajectories start and end at rest
so the robot moves continuously, the initial position q0 and
orientation are calculated by the current pose of the robot, the
intermediate point q1 and the end point q2 are defined by an
angle θk and a distance rk with respect to the initial point as
shown in figure 1.
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Fig. 1. Trajectory parameters.

The first four conditions are fixed so the vector of decision
variables is calculated by the parameters used to define the
position of the points q1 and q2:

ξ =


θ1
θ2
r1
r2

 (2)

The search space of an optimization problem is the domain
of the function to be optimized, in this case the domain is
the set of values used to find the optimal solution, each set is
defined by an upper and lower limits as follows:

θ1 ∈ (− φ1, φ1)

θ2 ∈ (− φ2, φ2)

r1 ∈ ( 0 , l1)

r2 ∈ ( 0 , l2) (3)

Where φk is the limit for the angle θk and lk is the limit
for the distance rk.

From this section set notation will be used to describe the
regions of the current map and to formulate the objective
function.

The set of all the points that are part of the map is called
M . In robotics a map is usually a description of an area which
classifies every position m ∈M into three sets: the free space
F , the obstacles O and the unknown area U . These definitions
imply that M = F ∪O ∪ U .

The task assigned to the robot is to explore a closed indoor
area to build a complete map. A map is completed when all
the points that can be reach by the robot belong to F and all
the points with which the robot can collide belong to O.

The mapping process is iterative, the robot should move
to different areas to classify the points using distance sensor

or equivalent. The robot can not classify points behind an
obstacle unless it moves around them.

Considering the mapping process, the optimal trajectory will
be the one that drives the robot over a set of positions P which
allows the robot to map unknown areas.

Based on the previous statement one might be tempted to
define the optimization problem as the minimization of the
distance between the current position of the robot and the
unknown areas, however not every point in the map can be
mapped, for instance all the points behind a wall can not be
reached so they can not be mapped.

A new set should be defined to describe the points in U
that can be mapped. These points are the ones in the border
between F and U , denoted by B, considering the definition
in equation 4.

B = {u ∈ U | (∃f ∈ F )[ ‖f − u‖ ≤ 1]} (4)

Because every point in M is a vector with coordinates
(x, y), the operator ‖·‖ is used to represent the distance
between two points using the euclidean norm.

It is proposed that the aptitude Aξ of a trajectory defined
by ξ is measured by the number of points in B that are in the
vicinity of the points in P .

The vicinity set Λk is defined as all points in M whose
distance to some point in P is less than or equal to λk, which
defines the maximum distance allowed. This set is defined as
follows:

Λk = {m ∈M | (∃p ∈ P )[ ‖p−m‖ ≤ λk]} (5)

A graphical description of all the sets defined in this section
is shown in figure 2.
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Fig. 2. Set definitions inside the map.

Considering all the previous definitions, the problem is
formulated as a maximization of the aptitude A of a trajectory,
calculated as the number of elements n(·), in B that also
belongs to the difference Λ2 \Λ1. Aptitude or cost function is
described by the following equation:

A = n({b | b ∈ B ∩ (Λ2 \ Λ1)}) (6)

As shown in figure 2 we consider λ2 > λ1, points in set
Λ1 are excluded from the cost function calculation because



the unknown areas may contain obstacles that have not been
mapped yet and getting to close to the unknown zone may
lead into a collision.

There are some restrictions that a feasible trajectory P must
hold for security reasons. Three functions are defined to ensure
that the robot will not collide to the obstacles.

It is important that all the points in a feasible trajectory P
are located inside the free area F , this means that P ⊂ F .
Therefore the level of transgression to this restriction R1 is
calculated as the number on elements in P that are not in F :

R1 = n({p | p ∈ P \ F}) (7)

It is also important that the elements in trajectory P are
far enough to the obstacles to avoid collisions, the minimum
distance is λ1. Therefore the level of transgression to this
restriction R2 is calculated as the number of elements in O
that are also in Λ1:

R2 = n({o | o ∈ O ∩ Λ1}) (8)

It is inconvenient that the robot navigates too close to the
border B since it could encounter obstacles that have not
been mapped yet. Therefore the level of transgression to this
restriction R3 is calculated as the number of elements in B
that are also in Λ1:

R3 = n({b | b ∈ B ∩ Λ1}) (9)

It is possible to see that the cost function in equation 6, as
well as the restriction functions in equations 7 8 9 depends on
the path P which in turn depends on parameter vector ξ so
finally the optimization problem can be formulated as follows:

Maximize
ξ

A(ξ)

subject to:
R1(ξ) ≤ 0

R2(ξ) ≤ 0

R3(ξ) ≤ bm (10)

Such that parameter vector ξ belongs to the search space
defined by equation 3. The value bm defines the upper limit
value allowed for restriction R3.

III. OPTIMIZATION PROBLEM IMPLEMENTATION

The platform used to implement the autonomous navigation
task is a commercial robot called TurtleBot2 driven by a
RaspberryPi3b computer running ROS Kinetic. A desktop
computer is also used to monitor the progress of the navigation
task as well as for visualize the current obtained map.

The robot uses a Microsoft Kinect as main sensor in order
to measure the distance of the surrounding points to the robot.

By using the information from the Kinect the robot can
obtain a partial map of the surrounding area by using a ROS
program called Gmapping which in turn uses the distance to
the objects and the measurement of the odometry to calculate
the position of the objects in the map.

The map obtained by this process is called an occupancy
grid [17] which is a vector that describes the occupancy

probability of each point in the map in the range (0, 100),
an unknown point is labeled as −1.

The proposed algorithm creates a gray scale image based
on the information in the occupancy grid. The obstacles O
are drawn in black (g = 0), the free area F es drawn in withe
(g = 255) and the unknown area U is drawn in gray (g = 128).

The set of borders B is calculated by finding all the pixels
in U which are next to a pixel in F using an eight directions
connectivity criterion. Figure 3 shows the process of finding
the pixels in B, these points are drawn in dark gray (g = 90).
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Fig. 3. Connectivity criterion to define border set B

Figure 3 shows connectivity of pixels in U to pixels in F
with black arrows in the left image, pixels found in B are
show in dark gray in right image.

The vicinity sets Λ1 and Λ2, are calculated by using the
well known dilate algorithm, this process is intended to be
used on a binary image, so a new image is created where the
elements of P are drawn in withe (g = 255) and all the other
pixels are drawn in black (g = 0), the new image has the
same dimensions as the original map.

The dilate algorithm is implemented by replacing the value
of each pixel with the maximum value in a mask centered in
each pixel, the size of the mask λ define the dilation degree.

Fig. 4. Dilatation process used to find vicinity sets Λ

Figure 4 shows the original image in the left, pixels added
by using dilation process are shown in gray in the left image,
using λ = 1 and λ = 2, the gray scale values are only for



demonstration purposes, the points added to set Λ and the
original points in P will have the same value.

The discrete map represented by an image obtained by using
the processes described in this section is shown in figure 5 as
the discrete version of the map shown in figure 2.

In the actual implementation sets P and Λk are saved in
different images apart from the original map, the reason is
that each pixels in M belongs to only one of the sets F , O, U
and B, this means that these sets are disjoint, so it is possible
to describe the membership to any of these sets by a different
gray scale in the same image without ambiguity, however any
position in M can also be in P or Λk so is not possible to
draw these sets in the same image. Figure 1 and 5 shows all
the sets in the same image only for demonstration purposes.
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Fig. 5. Discrete map.

Considering the images defined in this section is possible to
evaluate the membership of an element in M by comparing the
gray scale values of the pixels in the corresponding images.
By using this method is possible to evaluate the expressions
in the problem formulation of the equation 10.

IV. OPTIMIZATION METHODS

Classical optimization methods require to use the informa-
tion of the derivative of the cost function. In this case the
cost function defined by equation 6 represents the number of
elements in a set, which is calculated using the numerical
method described in section III, this means that there is no
explicit function of the derivative.

This kind of optimization problems can be solved by using
the approach of the heuristic methods, usually a heuristic is
intuitive technique used to get an approximate solution to a
problem when classical methods failed or are very slow.

When using heuristic methods there is no need to guar-
antee that the objective function is convex, differentiable or
even continuous because this methods rely only in function
evaluations. The tradeoff is that heuristics can not guarantee
asymptotic convergence.

This section provides a brief description of the three
heuristic techniques used to solve the optimization problem
previously formulated.

A. Blind search method

The blind search method can be described as a sequence of
iteration based on two operations: solution generation, which
is the program that produces a candidate solution in the search
space using random processes, the update procedure is the rule
used to replace the current accepted solution by the candidate
solution when it has a better cost function.

The method ends when some criterion is met, usually a
maximum number of evaluations or when the solution is not
improved any further over the last iterations.

This method has the advantage that the probability to find
the optimal solution increases over each iteration, the disad-
vantage is that the convergence is slow and is possible that the
error is big when not enough evaluations of the cost function
are used. This method sometimes is called uninformed search
because it does not use any information of the domain of the
function.

B. Hill climbing method

The hill climbing method is an extension of the blind
search but the difference is that the solution generator will
not produce a single candidate solution but a collection of
solutions around the current accepted solution.

Another difference is that the search space is contracted
each iteration using some deterministic rule, for instance the
limits of the intervals can be moved closer to the accepted
solution based on some factor.

In the update procedure the accepted solution is replaced by
the best solution among all the candidate solutions generated
during each iteration. The idea behind the hill climbing method
is to approximate the gradient of the function numerically.

The behavior of this method is described by two parts: the
exploration stage which occurs during the first iterations: the
search space is big enough to cover all the feasible solutions.
The approximation stage occurs during the last iterations,
when the search space is getting smaller, the purpose of this
stage is to increase the accuracy of the accepted solution.

The main advantage of the hill climbing method over the
blind search is that it produces more accurate results when
the cost function is smooth. It has the disadvantage that the
algorithm can get stock in local optimal solutions.
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Fig. 6. Search space contraction.



C. Genetic algorithm

A genetic algorithm (GA), proposed by John Holland [18],
is based on the natural selection process, the cost function
is associated to the aptitude of each solution, its applications
include solving multi objective optimization problems [19],
machine learning, pattern recognition, prediction, etc.

The solutions are coded in the form of binary chains. GA
are population methods, this means that several solutions are
created over all the search space, each one of them moves to
the optimal solution independently.

In a GA a solution represents an individual, iterations rep-
resents generations which create a new offspring by using the
information of the previous population by using mathematical
operators inspired in natural processes:

• Evaluation: This tool shows the relation between the
phenotype and genotype. In this process the binary chains
are converted to solutions to evaluated the cost function.

• Selection: This step represents the competition of the
individuals to be able to reproduce, the process involves
the comparison of the individual’s aptitude to choose the
better ones to create a population of parents.

• Crossover: This process generates the offspring by comb-
ing the chains of the parents selected in the previous step.

• Mutation: This tool is inspired in the random changes
that occurs in biological organisms, it is implemented
by randomly change the value o some genes using a
probabilistic distribution function.

At the end of each generation the population of the offspring
replace the population of the previous individuals.

An advantage of GA over the previous methods is the
parallel exploration which usually end up finding the optimal
solution with high accuracy. The disadvantage is that the
performance of the method depends on the problem and the
proper selection of the parameters for the implementation.

V. COMPARISON OF OPTIMIZATION METHODS

The efficiency comparison of the different algorithms imple-
mented were carry on in real tests on the commercial robotic
platform called TurtleBot2 using a RaspberryPi3b embedded
computer running Ubuntu 16.04 Xenial and ROS Kinetic.

Fig. 7. Experimental platform

The use of random variables in heuristic techniques implies
that every time the algorithms is executed a different solution
will be obtained. On way to measure the performance of an
heuristic method is to execute the program several times and
calculate the average solution and the variance of the results.

The objective of the mapping task is to explore all the zones
in a closed area, the task will be completed when the set B,
as defined by equation 4, is empty. Then it is proposed that
the efficiency measurement of the algorithms is n(B) after a
number of iterations is executed in each algorithm.

After 30 experiments performed, the GA results with a
lower average since the variance of the graph shows a trend
to five, which is less compared to the hill climbing algorithm
which has an average of eight, or the blind search with an
average of ten, for this reason it is known that the genetic
algorithm is the best in this comparison, see figure 8.
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Fig. 8. Comparison using independent executions

It is necessary to remember that the mapping process is
a repetitive sequences of steps alternating between trajectory
generation and motion, this means that a suboptimal trajectory
chosen at some point would affect all the following process.

There are many factors than can induce error in the mapping
process, for instance, a delay in the mapping generation,
changes in illumination, poor approximation of the objects po-
sition or odometry, etc. This sources of error are independent
from the optimization algorithm used.

Then a second efficiency measurement is proposed, all the
algorithms will be executed with the same information from
the sensors of the robot, the best trajectory will be followed by
the robot and we will compare the algorithms based on how
many times each algorithm produce the best solution during a
single mapping process.

In figure 9 the results of the second experiment are observed,
which shows the average number of times that one algorithm
was better than another during the same iteration and the same
conditions in the execution of the mapping. In this case it is
observed that the GA was selected an average of nine times
during the execution of the mapping, which indicates that it is
better in comparison with the hill climbing that was selected
twice and the blind search that was only selected once.

The results shown in figures 8 and 9 were obtained by using
30 experiments of each algorithm. The comparison were made
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Fig. 9. Comparison using the same execution

using a maximum number of evaluation Meva = 100 for all
the algorithms, in the case of the hill climbing method, the
evaluations were divided in Nit = 10 number of iterations
using Nev = 10 number of evaluations per iteration.

The genetic algorithm were implemented using binary tour-
nament selection, two points crossover with rate Cr = 0.9 and
uniform mutation with rate Mr = 0.9.

VI. CONCLUSION AND FUTURE WORKS

The results of both tests show that the algorithm with
the lowest number of points in the border and the one that
generates better results in more occasions is the GA. However,
overlaps can be observed in probability functions, which
means that sometimes one of the other algorithms can be
better, although it is unlikely.

Sometimes the robot lost its location due to faults of the
sensors, so the map was overloaded and routes were generated
in places different to the position of the robot, which caused
it to collide. On the other hand, this same problem could also
prevent the map from being updated, so the algorithm was not
able to find suitable routes, causing the robot to stay spinning.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Creation of the map

Figure 10 illustrates the creation of the map in six images,
in figure 10.a it is shown the initial map and position of the
robot, this is taken as starting point to generate the trajectories,
figures 10.b-10.e shown intermediate points that complete the
map, which are added as the robot makes decisions to rotate

or move through the free zone, finally figure 10.f shows the
completed map after several iterations of this process.

As future work we intend to implement other algorithms
such as the rapidly exploring random trees [20], potential
fields [21] and Simplex method of Nelder-Mead [22], which
will allow us to perform a new analysis and observe its
behavior through different perspectives in the solution of these
problems.
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