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Abstract This article aims to present the performance of a B-spline neural network

scheme for tuning both the reactive power provision controller from synchronous
machines and power system stabilizers in multi-machine power systems. The B-spline

neural network is an efficient tool to implement the adaptive control voltage and
power system stabilizer coordination, with the possibility of carrying out this task

on-line, taking into account the systems’ non-linearities. One of the main tasks within
this context is to estimate the best power system stabilizer’s parameters and adjust

the proportional-integral parameters for reactive power provision. In this article,
this is solved by a neural network algorithm. The applicability of the proposal is

demonstrated by simulation on two test systems. Results show that the proposed
coordination scheme is comparable to that obtained by a conventional design, without

requiring a strict model analysis.

Keywords automatic voltage regulator, controller’s coordination, multi-machine sys-
tems, oscillation mode stabilization

1. Introduction

Modern electrical power systems may be subjected to stress conditions due to the

continuous growth in load. In order for consumers to receive reliable electrical power,

the system’s operators must ensure that bus voltages are kept within allowable limits.

Power transfer from generating plants to consumption centers affects the load bus volt-

ages; therefore, it may be necessary to add elements into the network to provide safer

operation [1, 2].

In several countries the transmission system’s voltage control practice is currently

performed manually. This conventional way of addressing the voltage control problems

often exhibits unsatisfactory performances, such as [3] (i) reactive power generation,

(ii) high side voltage controls, and (iii) switching control of capacitors banks or shunt

reactors.
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1752 R. Tapia et al.

Another problem in power system operation is related to the small-signal oscillatory

instability caused by insufficient natural damping in the system. A variety of controllers

have been developed to enhance the damping of power oscillations [4–6]. The main

task of these controllers is to achieve the most effective damping, especially for the

electromechanical modes.

A practical power system stabilizer (PSS) must be robust over a wide range of

operating conditions and capable of damping the oscillation modes. From this perspective,

the conventional single-input PSS design approach based on a single-machine infinite-

bus (SMIB) linearized model around one operating condition exhibits some deficiencies.

(i) There are uncertainties in the linearized model resulting from the variation in the

operating configuration, since the linearization coefficients are derived typically at a nor-

mal operating condition. (ii) Various techniques, such as proportional-integral-derivative

(PID), artificial neural network (ANN), genetic algorithm (GA) fuzzy, hybrid neuro-fuzzy,

adaptive fuzzy logic, simulated annealing, pole-shifting, etc., have been tested to achieve

tuning under various operating conditions for the single-input PSS. But even after that,

the single-input PSS lacks robustness in a multi-machine power system.

In a PSS, the electrical power Pe and the rotor angular speed variation �! are calcu-

lated from the generator’s voltage and current measured values. In stationary operation,

deviations in the electrical power are used to evaluate the optimum stabilizing signal in

terms of amplitude and phase relationship by means of a lead/lag filter.

Currently, many plants employ conventional lead-lag structure PSSs, due to the ease

of on-line tuning and reliability. Over the last two decades, various PSS parameters’ tuning

schemes have been developed and applied to solve the problem of dynamic instability

in power system. Recently, several modern control techniques have been used to design

different PSSs. To increase the stabilizer’s damping performance, recent research has

paid attention to tuning these stabilizers simultaneously [7–16].

In [10], an improved direct feedback linearization adaptive control algorithm was

developed for achieving both voltage regulation and transient stability simultaneously.

This work uses a standard third-order model of a synchronous generator, which only

requires information about the physically available measurements of angular speed, active

power, and generator terminal voltage. In real time for an SMIB power system, the

control scheme is implemented. An output feedback controller is proposed to enhance

the transient stability of non-linear multi-machine power systems using a sliding-mode

speed stabilizer/sliding-mode voltage regulator [15]. The control law is proved only in

an electric power system (EPS) with three machines and nine buses, based on the eighth-

order generator model. In [16], a multi-machine EPS with four machines and nine buses

was used to assess the robustness and performance capabilities of a PSS and automatic

voltage regulator (AVR) scheme. The controller proposed is based on an adaptive neuro-

fuzzy inference system to enhance the transient stabilization, but the secondary voltage

regulation has not been addressed.

Therefore, the PSS and secondary voltage regulation used in an EPS for increasing

stability margins in real-time operation is an important topic that must be extended

considering real system conditions. In most of the literature, the controllers’ parameters

are adjusted separately [10], and both secondary voltage regulation and system stability

enhancement is difficult to attain simultaneously. Otherwise, the controllers are calculated

according to approximately linearized power systems models, but the system dynamic

performance may deteriorate when the operating point changes to some extent.

The PSS parameters’ tuning has been approached by two major strategies, sequential

tuning and simultaneous tuning. In order to obtain the set of optimal PSS parameters under
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PSS and SVR Tuning for Multi-machine Power Systems 1753

various operating conditions, the tuning and testing of PSS parameters must be repeated

under various system operating conditions. Therefore, if the sequential tuning method is

applied to tune PSS parameters, the parameters tuning will become more complicated,

and the result may not be a local or global optimal solution. On the other hand, in the case

that the simultaneous tuning method is employed for tuning the PSS parameters, which

can simultaneously relocate and coordinate the eigenvalues for various oscillating modes

under different operating conditions, the set of PSS parameters can be quite close to the

globally optimal solution. However, the drawback of the simultaneous tuning method is

the long computation time required for large power systems.

The simultaneous tuning of PSS parameters is usually formulated as a very large-

scale non-linear non-differentiable optimization problem. This kind of optimization prob-

lem is very hard to solve using conventional differentiable optimization algorithms. That

is, the problem of the PSS design is a multi-modal optimization problem (i.e., more

than one local optimum exists). Hence, conventional optimization techniques may be not

suitable for such a problem.

The modern power systems represent a huge operational challenge. They exhibit

highly complex topology and varied structural components. Usually, decentralized control

devices are employed, which provides local control to different power grid equipment,

such as PSSs, AVRs, flexible AC transmission systems (FACTS) devices, etc. These

control agents have helped to alleviate voltage, frequency, and angular problems and

to mitigate inter-area oscillations. However, the new control elements connected to the

system must be able to positively interact with the previously installed controllers. Thus,

they must be coordinated to obtain a satisfactory performance.

In this article, a B-spline neural network (B-SNN) is employed two main tasks:

one for the secondary voltage regulator (SVR) and one for PSS coordination, taking

care of a key feature—the proposed controller must be able to enhance the PSS’s

performance for damping purposes. The strategy is proposed to update conventional

PSSs currently operating in power systems that were tuned long ago. The main idea is

basically to re-tune the control gains through an on-line procedure, which involves a few

measurements. After that, the same controllers’ devices may continue working properly

under different operating conditions and topologies. Results show that this idea works

adequately, independently of the studied power system.

2. PSS Design

2.1. Power System Model

In this article, two power systems available in the open research are employed in order to

exemplify the proposition. The development of systematic methodologies for PSS tuning

is a problem that requires special attention. Once it is determined that a system requires

effective damping, especially for the electromechanical modes, the fundamental problem

is to find the best control parameters (static or dynamic). The deficiency of damping can

be solved by means of PSSs.

However, it is necessary to have some type of coordination algorithm. On the other

hand, for an SVR, the proportional-integral (PI) parameters values are required to obtain

a good reactive power provision for each machine. In this article, an on-line strategy

is applied to re-tune PSSs and SVR control parameters in order to adapt them to new

circumstances. The fourth-order dynamic model is utilized for generators, including a
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1754 R. Tapia et al.

static excitation system [2]. The set of equations for each generator becomes:

dı

dt
D ! � !0; (1)

d!

dt
D

1

M
.Tm � Te � D!/; (2)

dE 0

d

dt
D

1

T 0

q0

Œ�E 0

d C .xq � x0

q/iq�; (3)

dE 0

q

dt
D

1

T 0

d0

ŒEfd � E 0

q � .xd � x0

d /id �; (4)

dEfd

dt
D

1

TA

Œ�Efd C KA.Vref � Vt C Vs/�; (5)

where

ı (rad) and ! (rad/s) represent the rotor angular position and angular velocity,

E 0

d (p.u.) and E 0

q (p.u.) are the internal transient voltages of the synchronous generator,

Efd (p.u.) is the excitation voltage,

id (p.u.) and iq (p.u.) are the d - and q-axis currents,

T 0

d0 (sec) and T 0

q0 (sec) are the d and q open-circuit transient time constants,

x0

d
(p.u.) and x0

q (p.u.) are the d and q transient reactances,

xd (p.u.) and xq (p.u.) are the d and q synchronous reactances,

Tm (p.u.) and Te (p.u.) are the mechanical and electromagnetic nominal torque,

M is the inertia constant,

D is the damping factor,

KA and TA (sec) are the system excitation gain and time constant,

Vref is the reference voltage,

Vt is the terminal voltage magnitude, and

Vs is the PSS’s output signal.

2.2. PSS Model

The interaction between stabilizers may increase or decrease the damping of certain

oscillation rotor modes. To have a better performance in this respect, proper coordination

is required of all control devices used in the network, while also ensuring robustness

under different operating conditions.

A typical static excitation system has Vs as input, which is the modulation signal

from the PSS. The structure of a conventional PSS connected to the kth machine consists

of a gain, a washout unit, units of phase compensation, and an output limiter, as shown

in Figure 1. The washout unit is used to prevent changes of state of the input signal

by changing the voltage at terminals. In this article, both parameters—the gain k and

the time constant T —are updated on-line to attain a proper performance under different

operating conditions, without restructuring power stations. The use of the angular velocity

deviation �!i is assumed as the PSS’s input (Figure 1).
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PSS and SVR Tuning for Multi-machine Power Systems 1755

Figure 1. PSS block diagram.

To simplify the procedure, it is assumed that T1 D T3 and T2 D T4. These parameters

remain in their original values, but, of course, they could be adapted.

2.3. SVR Scheme

This article employs the concept of secondary voltage control proposed in [17]. The

proposition allows regulating the VAR provision for each generator according to its

rating. This strategy helps to accomplish an efficient VAR injection into the network,

handling the reactive flows depending on the load variation. Likewise, the pilot nodes’

regulation improves the voltage profile around critical areas. PI controllers will be utilized:

one for each generator plus a central controller, which estimates the reactive power that

each generator delivers (Figure 2). The required measurements are (a) reactive power

coming from each generator (b) generators’ terminal voltage, and (c) the pilot node

voltage magnitude. This article proposes the use of adaptive PI controllers to maintain

the reactive power control in each generator in order to avoid stressed conditions under

load variations throughout the day.

Figure 2. SVR scheme for multi-machine power system.
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1756 R. Tapia et al.

This can be achieved adding a B-SNN to update KP and KI gains in the ng C 1 PI

controllers (Figure 2), where each PI transfer function is given by

U.s/

E.s/
D

KI C Kps

s
: (6)

Thus, KP and KI are updated from a B-SNN at every sampled time. With this purpose,

2.ng C 1/ ANNs are assembled in the control scheme. In Figure 2, �1; �2 : : : ; �ng are

weighting factors to share the total reactive power; they are selected according to the

generator’s rating. Thus, the appropriate reactive power regulation will provide enough

reserve under stressed conditions.

3. Proposition

The major advantages of the ANNs are the controller’s design simplicity, their compro-

mise between the complexity of a conventional non-linear controller, and its performance.

The B-SNNs are a particular case of neural networks that allows the control and modeling

of systems adaptively, with the option of carrying out such tasks on-line and taking into

account the power grid non-linearities.

3.1. Neural Network Structure

A B-spline function is a piecewise polynomial mapping that is formed from a linear

combination of basis functions, and the multivariate basis functions are defined on a

lattice [18]. The on-line B-spline associative memory network (AMN) adjusts its weights

iteratively in an attempt to reproduce a particular function, whereas an off-line or batch

B-spline algorithm typically generates the coefficients by matrix inversion or using

conjugate gradient. B-spline AMNs adjust their (linear) weight vector, generally using

instantaneous least mean square (LMS)-type algorithms, in order to realize a particular

mapping, modifying the strength with which a particular basis function contributes to the

network output.

Through B-SNNs, there is the possibility to bound the input space by the basis

functions definition. Generally, only a fixed number of basis functions participate in the

network’s output. Therefore, not all the weights have to be calculated each sample time,

thus reducing the computational effort and time. In general, the B-SNN’s output can be

described by [18]

y D aw; (7)

w D Œw1 w2 � � � wp�T ; a D Œa1 a2 � � � ap �; (8)

where wi and ai are the i th weight and the i th B-SNN basis function output, respectively;

p is the number of weighting factors. i refers to a sub-index that can take values from

1 to p (vector dimension), and p represents the number of weighting factors, which

depends on a particular application. In this case, only one weighting factor was used to

each ANN (Figure 3). It allows diminishing of the computational effort with good system

response.

This article proposes that k and T be adapted through one B-SNN, respectively

(Figure 1); also, KP and KI for each SVR scheme are calculated (Figure 2). The
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PSS and SVR Tuning for Multi-machine Power Systems 1757

Figure 3. Proposed B-SNN for adapting PSS and SVR control parameters.

angular velocity deviation from its nominal value ex is the input signal to adapt gain

k, while the generator’s active power deviation from its nominal capacity ey is the input

signal to adapt the time constant T . In the other case, for the SVR scheme, the input

signal to calculate KP is the reactive power difference ez from the � factor. Finally, the

input variable to obtain the KI value is the same ex. Such an election is made based on

the close relationship between active power and velocity with respect to the damping.

Then the dynamic control parameters for a multi-machine system can be described as

follows:

k D NNj .ex ; wj /; (9)

T D NNj .ey ; wj /; (10)

Kp D NNm.ez ; wm/; (11)

KI D NNm.ex; wm/; (12)

where NNj denotes the B-spline network that is used to calculate k and T , and wj

is the corresponding weighting factor (j D 1; 2; : : : ; number of PSSs [nps]). Also,

NNm denotes the B-spline network that is used to calculate KP and KI , and wm is

the corresponding weighting factor (m D 1; 2; : : : ; number of generators [ng] plus one).

Figure 3 depicts a scheme of the proposed B-SNN.

In order to introduce an adaptive strategy, one neural network with nps C ng C

1 as the number of input signals with the same number of output signals is used to

calculate the best control parameters for both PSS and SVR schemes. The appropriate

design requires the following a priori information: the bounded values of ex, ey , and

ez and the size, shape, and overlap definition of the basis function. Such information

allows the bounding the B-SNN input and the enhancement of the convergence and

stability of the instantaneous adaptive rule [18]. Likewise, with this information, the

B-SNN estimates the optimal weights’ value. The neural network adaptive parameters

(Eqs. (9)–(12)) are created by univariate basis functions of order 3, considering that ex,

ey , and ez are bounded within Œ�1:5; 1:5� p.u.

3.2. Learning Rule

Learning in ANNs is usually achieved by minimizing the network’s error, which is a

measure of its performance, and is defined as the difference between the actual output

vector of the network and the desired one.
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1758 R. Tapia et al.

On-line learning of continuous functions, mostly via gradient-based methods on a

differentiable error measure, is one of the most powerful and commonly used approaches

to train large layered networks in general [19] and for non-stationary tasks in particular.

In this application, the parameters’ quick updating is sought. While conventional

adaptive techniques are suitable to represent objects with slowly changing parameters,

they can hardly handle complex systems with multiple operating modes. The instanta-

neous training rules provide an alternative so that the weights are continually updated and

reach the convergence to the optimal values. Also, conventional nets sometimes do not

converge or their training takes too much time [19–21]. In this article, the neural network

is trained on-line using the following error correction instantaneous learning rule [19]:

wi .t/ D wi.t � 1/ C
�ei.t/

ka.t/k2
2

ai .t/; (13)

where � is the learning rate, and ei .t/ is the instantaneous output error.

With respect to the learning rate, it takes one point within the interval Œ0; 2� as an

initial value for stability purposes [18]. This value is adjusted by trial and error. If � is set

close to 0, the training becomes slow. On the contrary, if this value is large, oscillations

may occur. In this application, it settles down in 0.0057 for k, 0.00136 for T , 0.00135

for KP , and 0.00025 for KI . It is proposed that during the actualization procedure, a

dead band is included to improve the learning rule convergence. The weighting factors

are not updated if the error has a value below 3%:

wi.t/ D

8

ˆ

<

ˆ

:

wi .t � 1/ C
�ei.t/

ka.t/k2
2

ai .t/ if jei j > 0:003

wi .t � 1/ otherwise

: (14)

This learning rule has been elected as an alternative to those that use, for instance,

Newton’s algorithms for updating the weights [21, 22] that require Hessian and Jacobian

matrix evaluation. Regarding the weights’ updating, Eq. (13) should be applied for each

input–output pair in each sample time; the updating occurs if the error is different from

zero, which is the reason that the weights converge to optimal values [18].

Thus, the proposition consists fundamentally of establishing its structure (the def-

inition of basis functions) and the value of the learning rate. Regarding the weights’

updating, Eq. (13) should be applied for each input–output pair in each sample time;

updating occurs if the error is different from zero. With respect to the learning rate, it

takes as an initial point one value inside the interval Œ0; 2� due to stability purposes [18].

This value is adjusted through trial and error; with a value close to zero, the training

becomes slow. Hence, the B-SNN training process is carried out continuously on-line,

while the weights’ value are updated using only two feedback variables.

4. Test Results and Analysis

In order to demonstrate the feasibility of this proposition, two multi-machine power

systems of open research are employed. The proposed tuning performance is exhibited. To

analyze the results, simulations are developed under different scenarios: (i) with the PSS

and SVR tuned by optimization [22] (static parameters), or FXPSS; (ii) with the PSS and

SVR tuned by B-SNN (dynamic parameters), or ANNPSS. Several operating conditions

are taken into account.
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PSS and SVR Tuning for Multi-machine Power Systems 1759

Figure 4. Proportional gain for SVR scheme, case 1.

4.1. First Analysis System

In this section the 39-bus, 10-generator test system is analyzed [23]. To examine the

results, four conditions are presented. Comparisons are made with the response obtained

using the PSS and SVR with fixed parameters (Figures 4–6). The PSS and SVR data are

summarized in the Appendix.

The first condition shows the system’s evolution when the reactive power is decreased

in 5% at t D 1 sec, then at t D 6 sec with a three-phase fault at bus 21 with duration

of 86 ms; after that time, the fault is cleared. Figure 4 displays the evolution of the

proportional gains for four generators. Quite similar results are exhibited for all adaptive

Figure 5. Reactive power Q8 generator 8 performance, case 3.
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1760 R. Tapia et al.

Figure 6. Power angle deviation evolution ı91 generator 9 performance, case 4.

parameters (PSS and SVR schemes). The initial conditions for each neural network

algorithm are based on typical values for all parameters control.

The second condition illustrates the system’s evolution when the reactive power is

decreased in 9% at t D 1 sec is also under a three-phase fault in bus 24 lasting for 85 ms;

after that, the fault is cleared without reconfiguration.

The third and fourth cases validate the appropriate system evolution under reactive

power increased at 5 and 10%, respectively, then at t D 6 sec with a three-phase fault

at buses 35 and 29, respectively, lasting for 85 ms; after that time, the fault is cleared.

Figure 5 shows that the dynamic behavior of the reactive power at generator 8 (case 3),

where the proposed scheme is better than that of the conventional PSS and SVR with

fixed parameters. In this case, two perturbations are presented; in both, the reactive power

response with the proposed scheme (ANNPSS) has better performance with respect to

fixed parameters (FXPSS) of the SVR and PSS controllers, considering the transient-

and steady-state conditions. For example, the overshoot is less than 0.1; on the other

hand, with fixed parameters, it is about 0.2; the settling time is 0.2 sec with respect to

5 sec with FXPSS, in the first perturbation. For the second, to achieving the steady-state

condition is about 2 sec more for fixed parameters, and the overshoot is larger, around

0.2. The steady-state values can be compared in Table 1, where it can be seen that the

proposed schemes attain less error with respect to the reference in the SVR scheme.

The performance of the tuning technique is in accordance with conditions 1, 2, and 3.

ANNPSS exhibits very good performance, adapting itself to the new conditions. Figure 6

presents the power angle deviation in generator 9 for case 4, where the controllers’

performance aids in maintaining the power system’s variables within permissible limits.

Table 2 illustrates the steady-state parameters reached by the neural network for the

PSS design, showing that they are updated under different operating conditions. Thus,

depending on the power system topology, these parameters modify their value.

Table 1 presents the steady-state performance of reactive power contributed by each

generator under the SVR algorithm. It is seen that it gets a minor total error in steady state

with the proposed parameter-updating scheme on maintaining fixed parameters’ values.
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Table 2

PSS adaptive parameters in steady state

Parameters

Case 1:

t D 1 sec

Qout 5%;

t D 6 sec

fault at bus 21

Case 2:

t D 1 sec

Qout 9%;

t D 6 sec

fault at bus 24

Case 3:

t D 1 sec

Qin 5%;

t D 6 sec

fault at bus 35

Case 4:

t D 1 sec

Qin 10%;

t D 6 sec

fault at bus 29

k 207.1153 207.1202 207.1153 207.1153

509.8731 509.8731 509.8731 509.8731

491.4195 491.4214 491.4175 491.4195

122.0566 122.0670 122.0631 122.0629

89.3447 89.3483 89.3522 89.3511

373.8666 373.8669 373.8679 373.8683

719.8990 719.8984 719.8969 719.9024

255.3865 255.3877 255.3875 255.3875

439.0476 439.0510 439.0481 439.0456

167.9558 167.9530 167.9558 167.9548

T 7.4919 7.4922 7.4916 7.4919

7.4620 7.4576 7.4716 7.4898

7.4900 7.4894 7.4918 7.4911

7.4943 7.4935 7.4928 7.4927

7.4932 7.4952 7.4936 7.4917

7.5027 7.4959 7.4950 7.4910

7.4975 7.4970 7.4955 7.4932

7.4927 7.4921 7.4943 7.4945

7.4894 7.4940 7.4912 7.5434

7.4931 7.4931 7.4935 7.4917

T1 D T3 0.08

T2 D T4 0.015

There is a comparison of desired reactive power contribution and simulation results

obtained; only in case 2 are the results different.

4.2. Second Analysis System

The New England system consists of 16 machines and 68 nodes [24]. The transient

model is used for generators, and neuronal control parameters are specified in Section 3.

For testing, the proposed three cases are presented: (1) three-phase fault at bus 63—

after 85 ms, the system returns to pre-fault condition; (2) this case illustrates the system

evolution when in t D 1 sec, a three-phase fault on bus 33 is simulated, lasting for 85 ms;

and (3) at t D 0:5 sec, a three-phase fault at bus 56 is simulated, lasting for 85 ms.

Figures 7–10 depict the system behavior, where satisfactory coordinated performance

can be appreciated. Figure 7 presents the angular difference evolution in generators 1, 7,

9 and 11 under condition 1. The PSS and SVR data are given in the Appendix. Figure 8

shows the dynamic behavior of nodal voltages close to the failed node response observed
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Figure 7. Angular difference performance with adaptive parameters considering machine 13 as

reference, case 1.

with low oscillations and achieving steady-state values similar to prefault. It compares

both results with ANNPSS and FXPSS; the overshoot and oscillations are larger without

retuning the results with the proposal scheme.

Figure 9 depicts the dynamic performance of reactive power in generators 2, 5, 11

and 15 based on the proposed scheme, achieving the values desired by the SVR algorithm.

Table 3 shows the steady-state values of generator 4 to illustrate the results obtained by

Figure 8. Voltage magnitude performance with adaptive and fixed parameters, case 2.
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1764 R. Tapia et al.

Figure 9. Reactive power performance with adaptive parameters, case 3.

tuning the PSS and SVR based on adaptive parameters, keeping all three cases very

close to the desired value. Finally, Figure 10 presents the active power evolution with the

proposal and considering fixed parameters. The transient response is diminished in terms

of overshoot magnitude without updated parameters. The controllers’ performance can

be weakened in some operation conditions, as the tuning process was made previously.

In large power systems, it is difficult to guarantee a suitable performance in all cases for

interesting variables; this proposal can be considered a good option to overcome these

shortcomings.

Figure 10. Active power performance with adaptive and fixed parameters, case 3.
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Table 3

Reactive power in steady state

Generator

Steady state

without SVR, Q Case 1 Q Case 2 Q Case 3 Q

2 1.8428 1.6087 1.5599 1.5891

5 1.6234 1.4146 1.4006 1.3919

12 2.4914 2.4852 2.4261 2.5978

15 0.6718 0.5817 0.4418 0.5625

5. Conclusion

The aim of the article is to show the performance of adaptive PSS and SVR parameters

as a means to enhance power system oscillations. In order to attain such purposes, a

B-SNN is proposed. With this neural adaptive scheme, the possibility of implementing

the on-line updating parameters has potential due to its learning ability and adaptability,

robustness, simple algorithm, fast calculations, and not exclusive but inclusive nature to

get a better solution under hardware constraints. This is desirable for practical hardware

implementation in power stations.

Unlike the conventional technique, the B-spline ANN exhibits an adaptive behaviour,

since the weights can be adapted on-line, responding to inputs and error values as

they arise. Also, it can take into account non-linearities, un-modeled dynamics, and

un-measurable noise. Simulations on two multi-machine power systems under different

disturbances and operating conditions demonstrate the effectiveness and robustness of

the proposed strategy. Dynamic and steady-state responses are analyzed.

There is a need for on-line tuning not only for PSS parameters also for SVR PI

controllers. It is a convenient tool because, in practice, the electrical grid is operating;

therefore, maybe only a few controller parameters must retune on-line, considering that

they exhibit a low performance in some operation conditions. Besides, the proposal

allows that many parameters achieve its optimal value without previous model system

knowledge; only some experience about variables performance is required.
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Appendix

All data are in p.u. unless specified otherwise.

39-bus, 10-generator test system:

PSS data:

k D Œ435; 197; 593; 202; 212; 197; 535; 534; 267; 220�I

T D 7:5I

T1 D T3 D 0:080I

T2 D T4 D 0:0150I

time constants have the same value for all machines.

SVR data:

� D Œ0:1348; 0:1302; 0:125; 0:0968; 0:0499; 0:1862; 0:1194; 0:0123; 0:0355; 0:1098�I

KP D Œ1:3124; 2:4703; 1:3125; 2:6131; 1:3114; 2:4445; 1:0302; 2:4569;

1:2720; 2:6140; 24:5029�I

KI D Œ1:0673; 0:0642; 1:9593; 1:0673; 0:0643; 1:9605; 1:0673; 0:0643;

1:9603; 1:0673; 3:5711�:

68-bus, 16-generator test system:

PSS data:

k D Œ372; 169; 508; 172; 182; 169; 458; 457; 228; 188; 85; 491; 506; 508; 211�I

T D 7:5I

T1 D T3 D 0:080I

T2 D T4 D 0:0150I

time constants have the same value for all machines.

SVR data:

� D Œ0:0413; 0:0660; 0:0711; 0:0383; 0:0581; 0:0786; 0:0353; 0:0001; 0:0018;

0:0022; 0:0001; 0:0892; 0:3133; 0:0223; 0:0240; 0:1646�I

KP D Œ1:6276; 0:5611; 0:0700; 0:4856; 0:2472; 0:0700; 0:8305; 0:0700; 0:6148;

0:7122; 0:0700; 5:8792; 0:0700; 1:2873; 0:0700; 2:3741; 0:0500�I

KI D Œ1:6265; 1:8538; 0:2613; 1:9473; 1:2986; 0:1832; 0:5770; 1:1292; 1:9500;

1:9968; 0:3220; 2:0000; 0:0500; 1:9821; 1:0034; 1:6489; 1:0054�:

D
ow

nl
oa

de
d 

by
 [

20
1.

11
6.

38
.1

8]
 a

t 0
7:

42
 0

9 
Ja

nu
ar

y 
20

13
 


