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Magnetic Field Generated by the Loops Used in
Traffic Control Systems
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María J. Palomo-Anaya, and Alexander Arroyo-Núñez

Abstract— In this paper, a detailed study about the value,
in any point of space P(x, y, z), of the magnetic field generated
by a rectangular loop that carries a current I has been made. The
analysis focuses on the study of rectangular magnetic loops that
are used as sensors in traffic control systems. The inductance of
magnetic loops is calculated numerically in three different ways,
and the optimal way of performing the numerical summation is
derived, which takes into account the magnetic field singularity
on the conductor itself. The calculations also take into account
the distance between the different turns in the loop. Later,
the results are compared with the most commonly used empirical
methods for inductance calculation. This paper shows the great
similarity between empirical and numerically calculated results
and concludes with the experimental verification and validation of
the obtained theoretical results. Thus, both the system to evaluate
the results and the proposed numerical methods for inductance
calculation can be used in other loops geometries. This method-
ology can also be used for the mutual inductance calculation that
appears between a buried loop and any kind of vehicle geometry,
whose oscillation frequency variation determines the magnetic
signature. The mutual inductance calculation can be used to
determine the signal level that can be exchanged between the
loops on the pavement and those on the vehicle, which in turn
can be used as a short-range communication system between
vehicles and infrastructures, with applications such as vehicles
classification, speed measurements, or communication between
vehicles.

Index Terms— Inductance in rectangular coils, inductive
communication, magnetic field, numerical calculation, vehicle
detection.

I. INTRODUCTION

IT HAS been many years since magnetic loops have been
used as basic sensors for vehicles detection. The operating

principle is very simple: when a metallic mass (the vehicle)
passes over the loop connected to an oscillating circuit,
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the loop inductance is altered and consequently a change in the
oscillating frequency takes place, which in turn is detected by
the control system [1]. The obtained results are very reliable
and therefore it is still considered as the reference detector
system [2], [3].

Taking into account the success of this device and its
widespread deployment in every road of the world, several
authors have proposed other applications, like the classification
of vehicles by means of their magnetic footprint [4], [5], the
bi-directional communication between vehicles and infrastruc-
tures [6] or vehicles speed measurement [7]–[10]. Moreover,
a variation of this system consisting in a quadrupole loop can
be used to improve detection of bicycles [11].

These applications require a precise knowledge about the
magnetic field generated by the rectangular magnetic loops.
Most of the textbooks analyze circular loops, whose sym-
metry allows a great simplification of the calculations [12].
In other cases where rectangular loops have been analyzed,
simplifications arise because the magnetic field is studied
at very short or very large distances relatively to the loops
dimensions; this allows to perform considerable simplifications
in the calculations [13].

However, in the case of the loops used in the traffic control
systems the studied phenomena take place at a distance of
the same order of magnitude than the loop size. Therefore
in the corresponding analysis it is not possible to perform any
simplification in the calculation of the magnetic fields. But the
current computing tools allow us to perform such analysis.

Specifically, this work analyses in detail the magnetic field
in any point of space, P(x,y,z), generated by a rectangular
loop that carries a current I . The expressions to obtain the
magnetic field generated by rectangular loops are analyzed and
later, different methods to obtain those loops inductance in an
optimized way are proposed. The results obtained by means
of numerical methods are compared with those obtained with
both the application of formulae proposed by other authors
and the experimental measurements.

II. THEORETICAL ANALYSIS OF THE MAGNETIC FIELD

GENERATED BY A RECTANGULAR LOOP

The following analysis starts with the application of
Maxwell equations. According to them, the divergence of the
magnetic field (�B) equals zero [12],

�∇ · �B = 0 (1)

To enable the simplification of calculations, �B can be
represented using the auxiliary vectorial function �A in such
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Fig. 1. Magnetic loop and point P(x,y,z) where the analysis of the magnetic
field is performed.

a way that:

�B = �∇ x �A (2)

That is, �B is the rotational of �A. Substituting (2) in (1) one
obtains:

�∇·
( �∇x �A

)
= 0 (3)

�A is the magnetic vector potential field. This field is related to
the current density, �J, which in turn originates �B. In the case
of a current along a linear conductor, �A is defined by:

�A = ∫l
μo�Idl ′

4πr
(4)

where:
�I is the current in the linear conductor,
r is the distance from each point of the conductor

to the point where the field is analyzed.

The solution represented by (4) has been obtained on the
basis of the only two assumptions that have been made in
our study: a) conductors are thin (i.e., the diameter is much
lower than the distance at which the field is studied) and b) the
loop carries a stationary current. However, the general solution
would include the conductor volumetric integral [12].

In order to analyze a thin wire rectangular loop, the
magnetic field is calculated as the sum of all contributions
to the field generated by each section of the loop. In Fig. 1,
a magnetic loop centered in the XY plane is shown, as well
as the point P(x,y,z) where the field is analyzed.

Here, r1, r2, r3, and r4 represent the distances between each
point of the sections that form the loop and the point where
the magnetic field is analyzed. These distances are obtained
from the following expressions:

r1 =
√

(x − x ′)2 + (y + b)2 + z2

r2 =
√

(x + a)2 + (y − y ′)2 + z2

r3 =
√

(x − x ′)2 + (y − b)2 + z2

r4 =
√

(x − a)2 + (y − y ′)2 + z2 (5)

The magnetic field in P(x,y,z) is calculated by means of
vector �A, given in (4). This calculation is performed assuming
a clockwise current “I” in the loop.

Given that the low frequencies are the ones of interest in
the applications of traffic control systems, one can assume a
stationary current in the loop, i.e., the current intensity is the
same in every point of the loop. This makes this study applica-
ble in the case of low frequency variable currents (generally
below 1 MHz).

The magnetic vector potential corresponding to the loop
section located between (a,−b,0) and (−a,−b,0) is defined

by �A1x . Substituting r1 of (5) in (4) one obtains:

�A1x = μ0 I

4π

∫ −a

a

dx ′
√

(x − x ′)2 + (y + b)2 + z2

This integration yields [14]:

�A1x = μ0 I

4π
ln

√
(x + a)2 + (y + b)2 + z2 − a − x

√
(x − a)2 + (y + b)2 + z2 + a − x

(6)

The magnetic vector potential which corresponds to the loop
section located between (−a,−b,0) and (−a,b,0) is defined

by �A2y . Similarly the previous calculation of A1x, when using
the distance r2 this component reads:

�A2y = μ0 I

4π
ln

√
(x + a)2 + (y − b)

2 + z2 + b − y√
(x + a)2 + (y + b)

2 + z2 − b − y
(7)

For the loop section located between (−a,b,0) y (a,b,0) the
magnetic vector potential is defined as �A3x . Thus, using r3 one
obtains:

�A3x = μ0 I

4π
ln

√
(x − a)2 + (y − b)2 + z2 + a − x

√
(x + a)2 + (y − b)2 + z2 − a − x

(8)

The loop section located between (a,b,0) y (a,-b,0) has
a magnetic vector potential defined as �A4y ; using r4 this
component can be written as:

�A4y = μ0 I

4π
ln

√
(x − a)2 + (y + b)

2 + z2 − b − y√
(x − a)2 + (y − b)

2 + z2 + b − y
(9)

With the purpose of simplifying the representation of
vector �A one can define:

R1 =
√

(x + a)2 + (y + b)2 + z2

R2 =
√

(x − a)2 + (y + b)2 + z2

R3 =
√

(x + a)2 + (y − b)2 + z2

R4 =
√

(x − a)2 + (y − b)
2 + z2

c1 = −a − x

c2 = a − x

d1 = −b − y

d2 = b − y (10)
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Substituting the values of (10) in (6), (7), (8), and (9):

�A1x = μ0 I

4π
ln

R1 + c1

R2 + c2

�A2y = μ0 I

4π
ln

R3 + d2

R1 + d1

�A3x = μ0 I

4π
ln

R4 + c2

R3 + c1

�A4y = μ0 I

4π
ln

R2 + d1

R4 + d2
(11)

Adding components “x” and “y” we obtain:

�Ax = μ0 I

4π
ln

[
R1 + c1

R2 + c2
∗ R4 + c2

R3 + c1

]

�Ay = μ0 I

4π
ln

[
R3 + d2

R1 + d1
∗ R2 + d1

R4 + d2

]
(12)

The magnetic vector potential �A has only “x” and “y”
components because from (4) one can see that �A is a line
integral along the loop, and since the loop has no Z component,
�A will not have it either.

From �A it is possible to calculate the magnetic field by
means of (2). Then,

�B =
(
− d

dz
Ay

)
�i +

(
d

dz
Ax

)
�j+(

d

dx
Ay − d

dy
Ax)�k (13)

Equation (13) is the magnetic field in point P(x,y,z), which
has three components; its analysis requires the calculation of
each one of them.

For component “x” one obtains:

�Bi = μ0 I

4π

[
z

R1(R1 + d1)
− z

R2(R2 + d1)

− z

R3(R3 + d2)
+ z

R4(R4 + d2)

]
(14)

Component “y” is given by:

�B j = μ0 I

4π

[
z

R1(R1 + c1)
− z

R2(R2 + c2)

− z

R3(R3 + c1)
+ z

R4(R4 + c2)

]
(15)

And component “z” is given by:

�Bk = μ0 I

4π

([
− (x + a)

R1(R1 + d1)
+ (x − a)

R2(R2 + d1)

+ (x + a)

R3(R3 + d2)
− (x − a)

R4(R4 + d2)

]

−
[

(y + b)

R1(R1 + c1)
− (y + b)

R2(R2 + c2)

− (y − b)

R3(R3 + c1)
+ (y − b)

R4(R4 + c2)

])
(16)

Since (14), (15), and (16) are the magnetic field components
in point P(x,y,z), its module is:

∣∣∣ �B
∣∣∣ =

√
(Bi )

2 + (
B j

)2 + (Bk)
2 (17)

These Equations have been checked against those presented
by Misakian [13], where one can see the expressions of a
magnetic field produced by one or more rectangular loops
located in the same plane.

III. RESULTS OF THEORETICAL ANALYSIS

From the expressions obtained in previous theoretical analy-
sis, it is possible to represent, in any point of space, the module
of the magnetic field generated by a rectangular loop.

In what follows, one can see a set of representations of the
magnetic field generated by a rectangular loop of dimensions
2x1 m at different heights from the loop that carries a current
of 100 mA.

In Fig. 2a, a scheme of the analyzed rectangular loop is
presented.

Fig. 2b represents the module of the magnetic field strength
generated by the loop on a parallel plane of 4x4 m dimensions
and at a height of 50 cm. The graph was obtained point by
point from (17). A surface slightly bigger than that of the
loop (with the aim of observing the range of the magnetic
field beyond the contour of the loop) has been chosen.

In both Fig. 2c and Fig. 2d the magnetic field at 25 cm and
5 cm height respectively is represented.

A. Loop Parameters Derivation

Once the magnetic field generated by the loop in each point
of space has been obtained, the next step consists in deriving
the loop’s electrical parameters such as the resistance and
inductance.

The equivalent series loop resistance RL can be obtained
from both conductor’s ohmic resistance R (which includes the
frequency contribution) and ground resistance Rg and is:

RL = R + Rg (18)

The loop ohmic resistance R depends on the operating fre-
quency; at low frequency it can be obtained from the cables
length, conductor radius, its resistivity and the number of turns
and is:

Ri0 = ρ
l

S
= ρ

2(2a + 2b)N

π R2
C

(19)

where

Ri0 : loop’s ohmic resistance at low frequency (ohm)
ρ : conductor resistivity (ohm·m)
Rc : conductor radius (m)
N : number of turns

But the resistance formula which includes the effect of the
high frequency is given by Johnson [15] and is:

R = Ri0
q

2

[
ber (q) × bei

′
(q) − bei(q) × ber

′
(q)(

bei ′
(q)

)2 + (
ber ′

(q)
)2

]
(20)

In (20), ber (q) is the real part of the complex Bessel function
of first kind, ber ′ (q) is the first derivative of the complex
Bessel function of first kind, bei (q) is the imaginary part of
the complex Bessel function of first kind, bei ′ (q) is the first
derivative of the imaginary part of the complex Bessel function
of first kind, where:

q = RC
√

2

δ
(21)
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Fig. 2. a) Loop of dimensions 2x1 m on the XY plane. b) Magnetic field module at 50 cm above the plane of the loop. c) Magnetic field module at 25 cm
above the plane of the loop. d) Magnetic field module at 5 cm above the plane of the loop.

and:

δ = 1√
μrμ0π f σ

(22)

where:

μ0 = air or free space permeability = 4π · 10−7 H/m
μr = copper wire relative permeability = 1
f = operation frequency (Hz)
σ = copper wire conductivity = 0.58 · 108 mhos/m

Ground resistance Rg is caused by the current induced in the
conducting substances existing in the pavement and subgrade
material surrounding the loop. This resistance can reduce
detector’s sensibility in those pavement locations where a high
quantity of conductors exists, as well as in locations with high
humidity content. Its calculation is performed assuming that
pavement magnetic losses are similar to those originated by a
ferrite or iron core in a coil. It is also assumed that relative
permeability μg = 1. Under these conditions ground resistance
is given by [16]:

Rg = ωL L tan δg (23)

where:

tan δg = loss tangent of pavement material
(a typical value is about 0.01)

L L = coil self-inductance (H)
ω = angular frequency = 2π f (radians s−1)
f = operating frequency (Hz)

Regarding the inductance, its calculation can be performed
by means of:

L∅ = N∅
I

(24)

where:

L∅ : loop inductance
∅ : magnetic flux crossing and generated by the loop
I : current in the loop
N : turns in the loop

The magnetic flux crossing the loop is calculated
(numerically) by the surface integral of the product of the
normal component of the magnetic field passing through the
loop surface:

∅ =
∫

S

�B·−→d S (25)

In this case the loop is rectangular; it is placed on the
XY plane and centered in the origin of coordinates. The
lengths of their sides are 2a and 2b, and they are parallel
to x and y axis. Under these conditions we are only inter-
ested in the normal component of the magnetic field, Bk ,
because the surface vector only has one component parallel to
Z axis. The infinitesimal surface element dS can be consid-
ered as the product of the two elements of longitude dydx
according to the Y and X axis. Taking all this in account,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MOCHOLÍ-SALCEDO et al.: MAGNETIC FIELD GENERATED BY THE LOOPS USED IN TRAFFIC CONTROL SYSTEMS 5

one can write:

∅ =
∫

S

�B �·d S =
∫ a

−a

∫ b

−b
BK dydx (26)

This integration can be solved numerically substituting the
integrals by summations. To this end, it is necessary to obtain
the magnetic field value in a succession of points in space
limited by a surface element dydx. If Nx and Ny are the
number of points (along X and Y axis respectively) where
the magnetic field is going to be measured, we obtain for the
elementary lengths:

dx = 2a

Nx

dy = 2b

Ny
(27)

In (26) Bk can be expressed as BK (x, y, z) , which is the
magnetic field component parallel to Z axis in point (x,y,z).
Thus the flux through the loop surface can be given by:

∅=
Nx −1∑
n=1

Ny−1∑
m=1

BK (−a + ndx,−b + mdy, 0) fx fydydx (28)

The summation limits have been chosen with the purpose
of avoiding the magnetic field measurement on the conductors
themselves because of the singularity that BK presents on
those points. In this way, summations are delimited by (−a +
dx, a−dx) and (−b+dy, b−dy) on X and Y axis respectively.
But this procedure causes a measurement error which has
been reduced by increasing the surface element in 50% at the
summation intervals located nearby the boundaries. For this
purpose, one can use the factors fx and fy in such a way that
fx = 1 in every point except in n = 1 and n = Nx − 1, where
fx = 1.5. Similarly, fy = 1 in every point except in m = 1
and m = Ny − 1, where fy = 1.5. By means of these two
factors, it is possible to avoid taking measurements just on the
conductors; their values were selected by trial and error.

Due to the abrupt change that appears in magnetic field
component BK located in the proximity of the conductors,
it is necessary to make a proper election of Nx and Ny . The
following paragraphs explain how this can be achieved.

Firstly, to compute the inductance of a rectangular loop,
we used one of the most common approximated expressions
given by Grover [17]:

LG = N2μ

π
(−2 (2a + 2b) + 2

√
(2a)2 + (2b)2

−2a ln

(
2a +

√
(2a)2 + (2b)2

2b

)

−2b ln

(
2b +

√
(2a)2 + (2b)2

2a

)

+2a log
2a

RC
+ 2b log

2b

RC
(29)

Secondly, to determine the number of integration points
Np to be taken in (28), the results obtained using both (24)
and (29) were compared. To do this, inductances were cal-
culated for different rectangular loops dimensions, different

number of turns and different number of points in the numeric
integral. The results comparison obtained by means of these
calculations are shown in Fig. 3. In this Figure one can see the
difference in results (relative error, Er ) obtained with both the
numeric integral and the approximated formula for different
loop dimensions and for different conductor radius Rc, where
the relative error is given by:

Er = L∅ − LG

LG
· 100 (%) ,

where LG is taken as the reference value. Also, each
Figure corresponds to different number of integration
points, Np .

The analysis of the relative errors (considered in absolute
value), shown in these Figures reveals that:

• For every specific loop dimensions and cable diameter,
error is independent from the number of turns (in the
example of Fig. 3a, the case for Rc = 0.0002 m is
represented).

• For every loop dimensions and cable diameter, error
depends on the number of points that have been used
for numeric integration.

• The minimal error is achieved when the integration is
performed for a number of points given by (30) (Fig. 3d):

Nx = 2a

3RC
; Ny = 2b

3RC
(30)

Taking these numbers of integration points, the obtained
relative error is less than 0.5%; the only limitation is that they
must be higher than 20. But even for a low number of points
relative error is less than 1%.

• If the number of points increases above the values given
by (30), as in Fig. 3b and 3c, the inductance obtained by
means of the integration technique, Lφ, is progressively
higher than the one obtained with the approximated
Equation, (29).

• If the number of points decreases below the values given
by (30), as in Fig. 3e and 3f, the inductance obtained by
means of the integration technique is progressively lower
than the one obtained with the approximated Equation.

• As the ratio between the loop dimensions and the cable
diameter diminishes, it is apparent that the difference
between the inductance obtained with the integration
technique and the approximated formula increases; like-
wise, for a given loop dimensions, relative error increases
with higher wire diameter.

• This difference also increases when the loop dimensions
diminish. In other words, for a given Rc value, relative
error increases (in module) when the loop dimensions
diminish.

It must be highlighted that the trends of the relative error
for the different graphs in Fig. 3d differ from the trends in
previous and posterior subfigures of Fig. 3. This is due to the
relative errors being below 1% and therefore, the rounding
errors can be of the same order of magnitude as the calculation
errors. This leads to relative error oscillations, with values very
close to zero.
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Fig. 3. Relative error between inductances calculated with (24) and (29) for different loop parameters and number of integration points Np. a) Np=2a/Rc
for different turns and Rc=0.0002 m; b) Np=2a/Rc; c) Np=a/Rc; d) Np=2a/3Rc; e) Np=a/2Rc; f) Np=2a/5Rc.

Regarding the loop length, it has to be noticed that: a) for
Intelligent Traffic Systems (ITS) applications loops dimen-
sions are not smaller than 0.1 m, and b) for loop dimensions
lower than 0.1 m the number of integration points given
by (30) would decrease, the magnetic field fluctuations could
not be properly followed and the difference with the theoretical
calculations increased.

B. Second Order Effects

In previous studies it has not been considered that all
the loop turns are not on the same coordinate z because
of the conductors’ dimensions. This effect was corrected by
Mills [18], who derived new expressions for the inductance.
In the case of N-turn equally separated rectangular loops,
inductance is represented by:

LT ,M = N L0 + 2 (N −1) M12v + 2 (N −2) M13v +. . . (31)

where L0 is the self-inductance of a single turn rectangular
loop, and M12v , M13v… are the mutual inductance between
the loop turns.

L0 is the sum of both internal, L0i , and external, L0e,
inductance:

L0 = L0i + L0e (32)

L0i is given by:

L0i = 2 (2a + 2b)Li (33)

Here, Li is the inductance per unit length and, similarly as
in (20), it must take into account the relationship between the
inductance at a specific frequency and at low frequency (Li0).
This relationship was also given by Johnson [15] and is:

Li = Li0
4

q

[
bei (q) × bei

′
(q) + ber (q) × ber

′
(q)

(bei ′
(q))

2 + (ber ′
(q))

2

]
(34)

where the inductance at low frequency Li0 is given by:

Li0 = μ0μr

8π
(H

/
m) (35)

Its value is 0.5·10−7 H/m for copper conductors.
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Fig. 4. Characteristics of two ideal, null cross section parallel conductors
for mutual inductance measurement.

Fig. 5. Characteristics of two parallel conductors for mutual inductance
measurement.

The calculation of L0e can be derived from the concepts
of mutual inductance, external self-inductance and from the
method of mutual inductance. The mutual inductance of a pair
of ideal parallel conductors, like the ones shown in Fig. 4,
is derived in [19] and is given by:

M (l, d) = ±μ0l

2π

⎧
⎨
⎩ln

⎡
⎣l

d
+
√

1+
(

l

d

)2
⎤
⎦+ d

l
−
√

1+
(

d

l

)2
⎫
⎬
⎭

(36)

In Fig. 4, l is the wires’ length and d is the distance
between them (both magnitudes in meters); the inductance will
then be given in Henries. Equation (36) is positive when the
current along both filaments has the same sense; otherwise it
is negative.

The external self-inductance of a pair of conductors like the
ones represented in Fig. 5 is given by:

L P = L1 − M12 + L2 − M21

where L1 and L2 are the self-inductance of the conductors
whereas M12 and M21 are the mutual inductances measured
from the conductors centers; it is assumed that the currents
distribution is the same in the entire conductor’s cross section.
Self-inductances are of negative sign because the currents in
conductors are of opposite sense. Since both conductors are
of the same dimensions, one can write:

L = L1 = L2

M = M12 = M21

Therefore:

L P = 2 (L − M)

In order to calculate the conductor external self-inductance
the mutual inductance method is used [20]. In this method
the conductor is replaced by two conductors of null cross
section, separated by a distance equal to the conductor’s radius.
Therefore, the external self-inductance is given by:

L P = 2 (M (l, RC ) − M (l, d)) (37)

From these results one can see that the external inductance L0e

of a one-turn rectangular loop is given by the sum of the
inductance of two pairs of parallel conductors, L p1 and L p2:

L0e = L p1 + L p2

L0e = 2 [M1 (l1, RC )−M1 (l1, l2)+M2 (l2, RC )−M2 (l2, l1)]

(38)

where l1 = 2a and l2 = 2b.
As it can be concluded from (38), the external inductance

of a one-turn rectangular loop equals the mutual inductance
of two identical coaxial rectangular loops separated by the
distance of the conductor’s radius.

The mutual inductance of two parallel rectangular
loops (like the ones shown in Fig. 6) can be obtained from
the mutual inductances between parallel conductors.

In this way, the mutual inductance between two rectangular
loops is given by:

M = −2
[

M13

(
A,

√
H 2 + B2

)
− M11 (A, H )

+ M24

(
B,

√
H 2 + A2

)
− M22 (B, H )

]
(39)

In previous (39), terms Mij are the mutual inductances
between segment i of the lower loop and segment j of the
upper loop. Factor 2 is because all the mutual inductances are
symmetrical, and for every i and j , Mij = M ji .

Another formula to calculate the inductance was given by
Niwa (1924) [21], and is:

L N (μH )

= 0.008N2 aa1

b

[
b

2a1
sinh−1 a

b
+ b

2a
sinh−1 a1

b

− 1

2

(
1 − a2

1

b2

)
b

a1
sinh−1 a

b

√
1 + a2

1
b2

− 1

2

(
1 − a2

b2

)
b

a
sinh−1 a1

b
√

1 + a2

b2

− a1

2b
sinh−1 a

a1
− a

2b
sinh−1 a1

a
+ π

2

−tan−1 aa1

b2
√

1 + g2

b2

+ b2

3aa1

√
1 + g2

b2

(
1 − g2

2b2

)

+ b2

3aa1
− b2

3aa1

√
1 + a2

b2

(
1 − a2

2b2

)

− b2

3aa1

√
1 + a2

1

b2

(
1 − a2

1

2b2

)

+ b

6aa1

(
g3 − a3 − a3

1

b2

)]
(40)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 6. Geometry for mutual inductance calculation between two coaxial
parallel rectangular loops.

where:

a :largest side of the loop
a1 :shortest side of the loop
d = 2RC + 2Ea: distance between two consecutive

turns, where RC is the conductor’s radius and Ea
is the insulator thickness

b = N·d: length of the loop
g2 = a2 + a2

1

Aside from the approximation presented from (24) to (28),
two more approximations which refer to the inclusion in the
integral calculation of the effect of cable’s thickness follow.
To this end, it is possible to correct the value of the flux
crossing each turn of the loop by taking into account the
separation between them. Then, in the case of an N-turn loop
that carries a current of intensity I, the total inductance will
be calculated using the fluxes ∅K 0 (magnetic flux generated
by a certain turn on the plane were it is located), ∅K 1(flux
generated by the turn adjacent to the one on which the flux is
being measured), and ∅K i (flux generated by the turn which
is separated i turns from the one on which the flux is being
measured). Consequently, the total inductance is given by:

LT I 1 = N∅K 0 + 2 (N −1) ∅K 12 (N −2) ∅K 2 + · · ·
I

(41)

where:

∅K 0 =
Nx −1∑
n=1

Ny −1∑
m=1

BK (−a + ndx,−b + mdy, 0) fx fydydx

(42)

Generally, for every 0 < i < N, one can write:

∅K i =
Nx∑

n=0

Ny∑
m=0

BK (−a + ndx,−b + mdy, idz) f ′
x f ′

ydydx

(43)

In (43) dz is the separation between the conductors’ centers
of two consecutive turns. Besides, f ′

x takes the value 1 in all
points except when n = 0 or n = Nx , in which its value is
0.5. Similarly, f ′

y takes the value 1 in all points except when
m = 0 or m = Ny , in which its value is 0.5.

Another approximation to this case is obtained assuming
that the total inductance is given by:

LT I 2 = N∅T 2

I
(44)

where the total equivalent flux ∅T 2 is approximated by the
expression:

∅T 2 =
N−1∑
i=0

Nx∑
n=0

Ny∑
m=0

BK (−a+ndx,−b+mdy, idz) f ′
x f ′

ydydx

IV. RESULTS WITH THE DIFFERENT METHODS

AND DISCUSSION

Below, the results about the calculation of the inductance
generated by a rectangular loop which have been obtained with
the different presented methods can be found.

Figure 7 shows the results obtained for different loop dimen-
sions, number of turns and the different models (methods)
that have been developed in this work. Conductor’s radius
and insulator’s width are supposed constant, their values being
0.001 m and 0.0005 m, respectively. These results correspond
only to squared loops where 2a = 2b. The assumption made
for all cases is that oscillation frequency is 20 kHz, current
intensity is 100 mA, the width of the cavity where the loops
are placed is 4.5 mm and tan δ of pavement is 0.01. All these
values are usually found in the loops used for vehicles
detection. Besides, only 40 terms of the Bessel functions have
been used, and the number of points taken for the numeric
integration is:

Nx = Ny = 2a

3RC
= 2b

3RC

In Fig. 7e) and 7f) the length of each side are 1 m and 2 m
respectively.

Previous results demonstrate that integral calculation
methods are appropriate to calculate the self-inductance
(LT I 1, LT I 2 and Lφ). In this sense, it is worth highlighting the
strong similarity between the results obtained with the three
alternative methods of numeric calculation and the three usual
standard models. So, one can remark the strong resemblance
between Lφ and L f,G , between LT I 1 and L N and ultimately,
between LT I 2 and LT ,M . Therefore, this can validate the
adoption of a similar method to obtain the mutual induc-
tance between two rectangular loops. This mutual inductance
appears between the buried loop and the one which represents
the vehicle’s contour.

A. Theoretical Model Verification

In order to confirm the calculations correctness several loops
were built and the magnetic fields generated by them were
measured [22]. The measured values were then compared with
theoretical ones obtained from (17). The characteristics of one
of the used loops were the following.

• Type of conductor: finned copper connecting cable,
polyvinyl chloride coated, and cross section 0.28 mm2.
Mills Equations were used with Rc = 0.0002985 and
insulator width of 0.0002.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MOCHOLÍ-SALCEDO et al.: MAGNETIC FIELD GENERATED BY THE LOOPS USED IN TRAFFIC CONTROL SYSTEMS 9

Fig. 7. Inductance values obtained in different ways. In the sub-figures from a) to d) inductance is given for different loop lengths, the parameters being the
different used methods or models and the number of turns Nt. In sub-figures e) and f) inductance is calculated for the different number of turns, the parameter
being the different used models. Sub-figure e) is obtained for a loop of 1m for each side whereas in f) is obtained for a loop of 2 m per side.

• Number of turns: 5
• Dimensions: 1.30x0.80 m

Using these characteristics, the inductance was obtained by
means of two methods. On the one hand, it was measured
with an LCR meter, manufactured by PROMA, type MZ-505,
at 1 kHZ, and the following values were obtained:

• L = 112.1 μH (Q = 0-512), C = 46.22 μF, R = 1.75 �

On the other hand, the same parameters where obtained
from Mills Equations, thus yielding:

• L=113.25 μH (Q=0.548), C=223.66 μF, R=1.298� at
1kHz.

The magnetic field was generated with a 37.76 mA rms
sinusoidal current at a frequency of 139.7 kHz. It was
measured with the magnetic field meter Exposure Level
Tester ELT-400. The sensor of this device has a spherical shape
with a diameter of 12.5 cm and contains loops by which the
magnetic field is detected.

The magnetic field generated in this way was measured by
placing the ELT-400 meter on a 2 cm height basis. Thereafter,
the device was horizontally displaced along the main central
axis of the loop. Readings were undertaken every 2 cm.
| �B| calculations were performed for a height of 8.25 cm,
which corresponds to the sum of the platform above which the
ELT-400 was placed, plus 6.25 cm of the sensor radius.

In Fig.8, one can see the superposition of both the measured
and the calculated values obtained with the herein developed
Equations.

The mismatch observed in Fig. 8 around the peaks between
experimental data and theoretical calculations are due to the
singularity presented by the electric field Equation on the
conductor. In the proximity of the conductor, the electric field
variations are very strong and therefore a small deviation in the
measuring point yields highly noticeable changes in readings.
Besides, the measuring instrument sensor has a diameter
of 12.5 cm and the given measured value is the integral of
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Fig. 8. Comparison between measured and calculated values of the magnetic
field.

the electric field in the surface where the measurement is
performed.

B. Discussion

The key idea of this study is that the proposed numerical
method provides results which are comparable with those
obtained with classical methods. Nevertheless, whereas the
latter are only applicable to a specific geometry, our method
can be used to the study of any geometry.

Moreover, classical methods provide the inductance value
of a rectangular loop, but they do not allow the visualization
of the generated magnetic field and how it interacts with other
structures (the vehicles passing over them), thus determining
a modification of the global inductance. However, our method
makes it possible, as will be shown in our next works.

V. CONCLUSIONS

In this work, a comparison between the magnetic field
values obtained in different ways has been performed. To this
end, different Equations that allow the magnetic field calcula-
tion have been presented and the results have been compared
with those generated by means of a method of numeric
integration. This method uses a specific size for the integration
intervals (cells). The obtained expressions are of general
character, the only restrictions being a small conductor cross
section and stationary currents. This allows the magnetic
field calculation at distances of the some order of magnitude
than the loop dimensions, which in turn are the distances of
interest in applications like the precise detection of metallic
elements or short distance communications by means of
magnetic inductance.

Comparisons of both magnetic field real measurements and
theoretical results were performed thus verifying the goodness
of model results. These results show that the obtained Equa-
tions yield a good enough approximation to real values, and
therefore they can be a tool for the design of rectangular loops.

Although the hereinabove described formulas correspond to
a rectangular loop, the same procedure might apply to any type
of loop formed by rectilinear segments located on a plane.

The obtained results might help considerably to analyze
some phenomena like:

• The error that can be made when estimating a vehicle size
if one takes only into account the moments of activation
and deactivation of the electronic units which control the
loop sensors.

• The magnetic imprint most appropriate amplitudes band
that must be used to estimate the vehicles speed by means
of only one loop.

• The coverage area of a short range wireless communi-
cation system between vehicles and infrastructures by
means of magnetic coupling.

All this involves the need for analyzing each loop response.
If the presented model is appropriate all these analyses will
be carried out by means of very simple electric measurements
and simulation technics.

In the next works, the results obtained in these fields will
be presented.
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