
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Efficient mechanical design and limit cycle stability for a humanoid robot:
An application of genetic algorithms

Rafael Stanley Núñez Cruz⁎, Juan Manuel Ibarra Zannatha

Department of Automatic Control, CINVESTAV, México, Mexico

A R T I C L E I N F O

Keywords:
Optimal Design
Passive Dynamic Walkers
Genetic Algorithms
Optimal Feedback Control

A B S T R A C T

In this paper the application of Genetic Algorithms is presented to the task of designing a humanoid robot able
to exhibit an efficient walking. This task is presented as an optimization problem. The objective function is the
so-called Specific Cost of Transportation and the restrictions of the problem are based on the Limit Cycle
Walking stability criterion. The mechanical design of the prototype and its walking trajectories are inspired on
passive dynamic walkers. A basic genetic algorithm was used to find: the optimized mechanical parameters for
design, the walking trajectories and the feedback gains used in the control of the current prototype.

1. Introduction

The present work shows the continuity that our group has given to
the design of humanoid robots that began with the development of the
prototype AH1N1 [1]. Now we are focusing our approach on Energy
efficiency which is difficult to obtain on humanoid walking robots, we
decide to face this task as an optimization problem [2].

According to the Limit Cycle Walking paradigm [3], in order to find
more efficient, natural, fast and robust walking motions it is necessary
to reduce the artificial constraints added when using other stability
criteria usually based on Zero Moment Point [4].

The most generic definition of walking stability, without artificial
constraints, is ”to avoid falling”. The use of this definition implies to
evaluate all possible walking trajectories and evaluate if the walker falls
or not. In order to use this definition in a practical manner we propose
the use of Genetic Algorithms by considering the task as an optimiza-
tion problem.

Since the analysis of Passive Dynamic Walkers [5] follows Limit
Cycle Stability we decide to study these machines as a base for the
mechanical design of our humanoid robot platform. In Fig. 1 are
presented some of the main architectures considered.

The original methodology used to built actuated robots based on
passive dynamic walkers [6] consists on the addition of actuation and
control systems to the passive version. Since passive walkers move on a
downhill slope, the actuators emulate the effect of the gravity on the
slope so the actuated mechanism can move on a flat surface. This
transition can modify the original mechanical design in such a way that
the efficiency of the passive version is mitigated on this transition.

This is the reason why we decided to change the approach by

starting with an actuated walker, which uses the principles of passive
dynamic walkers and find out which are the parameters that can be
optimized to obtain energy efficiency. We study the next different
approaches as a point of departure:

Frequency of the system: The oscillatory nature of walking is so
evident that is reasonable to attempt to use some of the techniques that
show good results on oscillatory systems. One of this methods [7]
propose the addition of torsional springs on each joint of the system,
the optimal stiffness for each joint is found by using an adjustment law,
the idea of this method is to match the natural frequency of the system
and the one of the reference trajectory.

Amplitude and frequency of the step: Other method [8] propose to
find the optimal amplitude and frequency of the reference trajectory in
order to exploit the inherent cyclic characteristics of the system.

Control law: Based on the Optimal Control Theory it is possible to
express energy consumption in terms of the feedback control gains [9],
however a realistic mathematical walking model is difficult to optimize
by using conventional optimization techniques.

The main contribution of this paper is the use of Genetic Algorithms
to put together all these partial points of view to define a more general
optimization problem where mechanical parameters, walking trajec-
tories and law control can be optimized and by using Limit Cycle
Walking stability criterion the solutions are restricted to stable cycles.

In the area of robotics, Genetic Algorithms have already been used
in other specific problems such as the design of optimal gaits [10] or to
select mechanical parameters and proper morphology [11].

In the remainder of this paper we present our approach on the
design of a humanoid robot called Johnny. Some of the characteristics
of the passive dynamic walkers we used to design our own robot are
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described in Section 2. The mathematical model of the gait and
definition of stability are discussed in Section 3. The gate design and
its conversion to joint trajectories is presented in Section 4. The
optimization problem, including cost function, restrictions and search
space is formulated on Section 5. The characteristics of the Genetic
Algorithm selected as optimization method are described in Section 6.
The results of the optimization algorithm are presented along with the
characteristics of the prototype built in Section 7. We conclude with a
summary and future work in Section 8.

2. Passive dynamic walkers

A passive dynamic walker is a two legged machine designed to walk
stably. This kind of walker has no actuators neither control systems, the
movement of this machine is mainly a phenomena produced by the
effect of the gravity on its limbs and the equilibrium between potential
and kinetic energy. Passive dynamic walkers exhibit a stable gait when
put on downhill slope and proper initial conditions of position and
velocity are set.

McGeer began the study of passive dynamic walkers by using a
mathematical approach, he built a straight legged prototype with
rounded feet, whose movement was restricted to the sagittal plane,
which demonstrates stable walking with no control and no actuators,
Fig. 1A. This walker uses a mechanism to slightly retract the swing foot
to avoid scuffing.

The methodology used to built this first prototype [5] consists in
finding proper initial conditions of position and velocity that produce a
limit cycle, for a given set of physical parameters of the used gait
model, in case that no limit cycle can be found, a new set of physical
parameters must be defined in order to continue the search, this can be
done by modifying slightly some physical dimension, i.e. the length of
the legs, the radius of the feet, mass distribution, etc.

Most of the time, is possible to find more than one set of parameters
that produce a stable walking, each one of this possible solutions will
produce a corresponding actuated mechanism that requires, in general,
a different amount of energy to move on an horizontal surface.

After the original prototype some researchers have studied the
addition of other elements:

McGeer [12] designed a second version of his original passive
walker by adding knees to the legs (Fig. 1B), he also added a
mechanism to lock and release the knees depending if it is the stance
or the swing leg. With this addition, the machine was able to exhibit a
more human-like movement and avoid scuffing while keeping low
actuation.

Coleman and Ruina [13] built a rounded feet walker which allows
lateral movement, this walker also have stable bars attached to the legs
to increase stability, Fig. 1C. This straight leg walker was able to avoid
scuffing without additional mechanisms although it can only move in
small steps.

Wisse [14] designed a model with cylindrical feet and articulated
ankles, Fig. 1D, showing that coupling Lean and Yaw movements can
lead in to stable 3D passive movements above a minimum forward

velocity just as bicycles.
Collins [15] developed a sophisticated prototype that mechanically

couples the movement of the legs to balance a torso and moving arms,
Fig. 1E, this prototype exhibit a very stable and human-like walking
with efficient use of the actuation provided.

Narukawa [16] used springs on the ankles of his flat feet version,
Fig. 1F, this addition allows to modify the frequency of the gait in an
efficient way, however a bad selection of the springs stiffness can lead
in to undesired behaviors as foot oscillations or rebounds at contact.

The previous approaches were studied and compared by simula-
tions and by building our own prototypes, these passive versions can be
seen in Fig. 2.

Based on the performance obtained in these passive prototypes it
was decided to include the next characteristics on our actuated plat-
form:

• Additional masses on the limbs which form the legs in order to
obtain an specific center of mass position.

• Rotational springs on each of the joints which form the legs in order
to obtain an specific frequency of the mechanism.

• Flat feet and articulated ankle in order to apply control torques.

• Torso and swings arms to compensate rotational movements.

The mechanical architecture of Johnny consist in 22 actuator used
as follows: 5 dof for each leg, 2 dof for the chest, 3 dof for each arm, 1
dof for each hand and 2 dof for the neck.

3. Mathematical model

Gait is modeled as an interconnection of continuous stages with
discrete events, Fig. 3 shows the five stages of walking used in the
model, the final state vector on each stage is used as initial conditions
for the next one:

(A) Swing phase: When the robot is supported only on one foot, its
movement is governed by a system of nonlinear equations, we consider
three open kinematic chains whose origin coordinate frame are
connected to the foot in the ground (one kinematic chain for each
arm and another one for the swing leg).

The mathematical model, during this phase, can be obtained using
Euler–Lagrange equation or Newton–Euler formulation, for simplicity
we will consider no changes in the walking direction. The complete
kinematic chains shown in Fig. 4 has 22 joints however in the
mathematical model we will not consider the joints for the head and
hands neither the joints used to change walking direction, so the
mathematical model considers joints from q0 to q15.

(B) Locked knee: In the case of full passive walkers, knees have
mechanical restrictions to avoid hypertension, when the knee is full
extended a mechanism blocks its movement and keeps the swing leg
straight.

This collision produce a discontinuity on joint's velocity. The

Fig. 1. Passive Dynamic Walkers previously studied.

Fig. 2. Passive Dynamic Walkers previously developed.
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velocities after the impact are calculated by using the conservation of
angular momentum.

After the knee is blocked the kinematic chain of the leg loses one
joint and the system continues its movement with the new velocities.

(C) Heel strike: In the case of flat feet robots, the swing foot touches
the ground by the heel before it makes full contact with the ground,
however usually this phenomena is not modeled, but in the case the
robot have springs on ankle's joint it is necessary to model the
conversion from kinetic to potential energy, which occurs when these
springs get compressed as the swing foot makes full contact with the
ground.

(D) Double support phase: When the swing foot makes full contact
with the ground another collision occurs and the support point is
transferred to the opposite foot. This events is considered instanta-
neous so the position of the robot is the same after the impact and only
velocities are changed. This collision is also modeled by using the
conservation of angular momentum.

After this collision the equations of motion must be rewritten
considering the origin at the ankle of the new support foot.

(E) Rear foot push up: As the rear foot leaves the ground the ankle's
springs release the energy store pushing the robot forward, this effect is
model as a conversion of potential to kinetic energy. This is the
opposite phenomena of stage C.

These five stages constitute a complete walking cycle, the final
conditions of the current cycle will be the initial conditions of the next
one.

In most of the cases it is difficult to represent this model as a step-
to-step transition, in a closed form, as shown in Eq. (1):

x S x= ( )k k+1 (1)

Here x q q= [ ̇ ]k k k represents the state vector form by the angular
positions and velocities of each joint at the beginning of step k. This
equation is known as Stride Function when it is related with a walker
model.

Usually the way to evaluate Eq. (1), to obtain the trajectories of the
robot, given some initial conditions x0, consists in using numerical
integrations of the corresponding nonlinear system depending on the
stage of the robot.

At the beginning, the model of the swing phase is integrated until
knee collision is detected. The final conditions of this model are used to
calculate the angular velocities after the impact by using conservation
of angular momentum about the base foot.

For this system it is possible to express angular momentum in a
matrix of the form H A q q= ( ) .̇ Matching the angular momentum before
and after the impact is possible to obtain an expression for the
velocities after the impact:

q A q A q q̇ = ( ( )) ( ) ̇+ + + −1 − − − (2)

Here superscripts −,+ represent that the state is calculated before
and after the impact. From this point the model is changed to one with
the locked knee, the initial conditions used for this stage are the final
positions obtained on the previous stage and the new velocities
calculated. This model is integrated until the swing foot makes full
contact with the ground.

After this stage, potential energy stored in the swing ankle springs is
calculated, then the velocity of the stance leg is reduced in such a way
that the reduction of the kinetic energy of the system match the
potential energy calculated.

After the energy conversion is modeled, the collision caused by the
change of the support point is calculated by using conservation of
angular momentum about the point of contact.

It is also possible to calculate another expression in the form of Eq.
(2) for this collision in order the calculate the velocities after this
impact. But it is necessary to remember that the state vector after the
impact must be referenced to the new stance leg (the previous swing
leg) at the contact point.

Finally angular velocities must be adjusted in order to include the
conversion of potential to kinetic energy caused by the release of the
springs. First potential energy stored in the rear ankle springs is
calculated, then the velocity of the stance leg is augmented in such a
way that the increase of the kinetic energy of the system match the
potential energy calculated.

This last state vector can now be used as initial condition for the
next gait cycle.

3.1. Stability

The formal definition of Limit Cycle Walking according to [3] is as
follows: “Limit Cycle Walking is a nominally periodic sequence of steps
that is stable as a whole but not locally stable at every instant in time”.

This type of stability called Cyclic or Orbital stability, the nominal
periodic sequence of step refers to a periodic or cycle motion of the
walker observed in the absence of disturbances. This periodic motion is
stable when the trajectories close enough to the nominal motion
approach to the nominal cycle over multiple steps as shown Fig. 5.

To analyze this definition of stability the map S(x) of Eq. (1) is
considered. A periodic motion must fulfill the restriction r x( *) = 01 ,

Fig. 3. Walking stages: (A) Swing phase (B) Locked knee (C) Heel Strike (D) Double support phase (E) Rear foot push up.
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Fig. 4. Johnny's Kinematic chain.
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where:

r x S x x( ) = ( ) −1 (3)

The map S(x) is generally called a Poincaré map and the state vector
x* is known as a fixed point and in this case belongs to the set ∑ of
initial conditions.

The stability of a fixed point using nonlinear dynamics scheme can
be defined as follows [17]: The fixed point x* is stable if, for any ϵ > 0,
there exists δ > 0 such that whenever x x| − *|0 , x x| − *|n for all positive
n.

It is possible to obtain a stability criterion for a fixed point by
linearizing the map and considering small disturbances. The lineariza-
tion of S(x) about x* is given by:

S x S x J x x x( ) = ( *) + ( *)( − *)k k (4)

where J x x( *) = ( *)S
x

∂
∂ is the Jacobian Matrix of map S. Considering

small disturbances in the form:

x x x= * + Δk
k (5a)

x x x= * + Δk
k

+1
+1 (5b)

By substituting Eq. (5b) in Eq. (4) it is possible to get the dynamic of
the disturbance xΔ .

x J x xΔ = ( *)Δk k+1 (6)

Fixed point x* will be stable if the magnitude of all eigen values σi of
J x( *) are less than 1. In this case small disturbances will decrease step
after step. This restriction for a fixed point to be stable can be written as
follows:

r x σ( ) = max( ) < 1
i

i2 (7)

According to this analysis, stability of walking cycle can be obtained
by defining periodic motions such that the initial conditions of the step
are stable fixed points. Usually Newton–Rapshon or similar algorithms
are used to find the roots of Eq. (3) to obtain fixed points, however it
must be considered that the algorithm can fail if the initial guess is not
good enough so the solution does not converge to a fixed point or if
there are no fixed points for the set of parameters.

In the case of a high degree of freedom mechanism, such as the
humanoid robot we are considering, it will be very difficult to obtain
periodic motions given only initial conditions of the step, so we decided
to assign periodic reference trajectories so the conditions of Eq. (3) is
fulfilled if the robot can follow those trajectories without falling.

After a reference walking trajectory is defined, the map S(x) can be
calculated by numerical integration of the model and using a feedback
control then Jacobian matrix can also be calculated numerically to
evaluate if the references produce a stable walking cycle. This

procedure requires an accurate model of the actuators so the control
torques in the simulation can represent the capabilities of the real
actuators.

4. Parametric walking

Nowadays Passive Dynamic Walkers are the most representative
machines that effectively use the Limit Cycle Walking paradigm, in
order to define walking trajectories for an actuated walker we decide to
consider the parametric trajectories of a simplified Passive Dynamic
Walker model in such a way we add the less artificial constraints.

The parametric trajectories of the hip, foots and hands will be
designed to mimic the movement of passive mechanisms. At the
beginning the trajectories will be defined on the task space then inverse
kinematic is used to find joint trajectories for each actuator.

4.1. Movement of the hip

In order to define the trajectories of the hip we will consider the
simplified model of a 3D passive dynamic walker with straight legs. The
simplest model of one of these mechanisms is an inverted pendulum
without actuation.

By using the notation of Fig. 6, the model of the inverted pendulum
on the XZ plane can be written as follows:

θ g
P

θ¨ − sin = 0
l

By considering θ θsin = for small angles and ω = g
P

2
l
the linearized

model is:

θ ω θ¨ − = 02 (8)

which has the solution, in terms of position and velocity:

θ a e a e θ a ωe a ωe= + , ̇ = −ωt ωt ωt ωt
1 2

−
1 2

− (9)

By multiplying both sides of Eq. (8) by θ ̇ and integrating with
respect to time we get the orbital energy [18] equation:

θ ω θ E1
2

̇ −
2

=2
2

2

To minimize orbital energy, E=0, produces the next relation
between angular position and velocity:

θ ωθ̇ = − (10)

Orbital energy remains constant during the movement, so taking
E=0 implies that the pendulum will stand still when it reaches vertical
position, in other words, the energy will be not enough to continue
moving. If a minimum amount of energy δ is added, the pendulum will
be able to complete the cycle. So the value of δ can be found in terms of
the time defined to complete the cycle. Considering this explanation it
is possible to rewrite Eq. (10) as follows:

θ ωθ δ̇ = − +0 0 (11)

In order to get a cyclic movement, the initial condition should

Fig. 5. Limit Cycle.
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Fig. 6. Non actuated inverted pendulum.
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repeat from step to step [5]. The initial and final angular positions
should have the same magnitude with opposite direction and the
velocity should be slightly bigger because the impact that occurs during
the support transfer will produce an instantaneous decrease of the
angular velocity, this leads to the next restrictions:

θ θ θ θ θ t θ θ t
η

θ(0) = − , (0) = , ( ) = , ( ) = 1
z z0 0 0 0

(12)

where parameter tz is the time it takes the robot to complete a step and
parameter η0 < < 1 is a constant used to describe the energy lost
during support transfer.

In order to fully define the trajectory of the pendulum, describe by
Eq. (9) it is necessary to find constants a1, a2 and δ by considering the
restrictions written in Eqs. (11) and (12) for given tz and η parameters.

By evaluating t=0 and t t= z in Eq. (9) the next system of equation
are obtained:

θ a a− = +0 1 2 (13a)

ωθ δ a ω a ω+ = −0 1 2 (13b)

θ a e a e= +ωt ωt
0 1 2

−z z (13c)

η
ωθ δ a ωe a ωe1 ( + ) = −ωt ωt

0 1 2
−z z

(13d)

By using (13a) and (13b) it is possible to find constants a1 and a2:

a δ
ω

a δ
ω

θ=
2

, = −
2

−1 2 0

Finally using Eqs. (13c) and (13d) it is possible to find constant δ:

δ ωθ η
ηe

= ( + 1)
− 1ωt

0
z

By substituting these constants in Eq. (9) we obtain the trajectory
that drives the pendulum from θ− 0 to θ0 in time tz, which is:

⎛
⎝⎜

⎞
⎠⎟θ t θ η

ηe
e θ η

ηe
θ e( ) = ( + 1)

2 − 2
− ( + 1)

2 − 2
−ωt

ωt
ωt

ωt0 0
0

−
z z

The initial position θ0 can be found in terms of the length of the
step Lz and the extension of the leg Pl, which remains constant for the
stance leg:

⎛
⎝⎜

⎞
⎠⎟θ

L
P

= arcsin
2

z

l
0

The trajectory of the hip H
⎯→⎯

in the task space, with respect to the
coordinate system in Fig. 7, is given by:

H t P θ t H t P θ t( ) = cos( ( )), ( ) = sin( ( ))x l z l

4.2. Movement of the limbs

When the first humanoid robots based on passive dynamic walkers
were designed, the idea was to emphasize the low energetic consump-
tion that these machines were able to achieve, so most of the times it
was used just enough actuation to walk.

In the case of the robot build by Cornell University [19], each leg
and the opposite arm make up a single link, that means that there is no
relative movement. Another case is the robot Denise from Delft
University [20], this robot uses chains to couple the movement of each
leg with the opposite arm while maintaining the chest upright.

In the case of Johnny, energetic consumption is an important
design parameter but also the capability to perform other tasks rather
than walking, so it was decided to use independent actuators on each
joint and synchronize the corresponding trajectories during walking.
Since the movement of the hip was already defined, now is possible to
design the movement of the remaining limbs: chest, swing leg and

hands, by specifying the corresponding relations.
In Fig. 7 the trajectories of the robot's limbs, during the single

support phase, are shown. The origin of the coordinate system is on the
ankle of the stance leg which is indicated with double lines, the same
way that the corresponding coupled arm, we will refer to these limbs as
stance because both of them are always above the origin of the
coordinate system. On the other hand, we will refer to the leg that
moves to the front and the corresponding arm as swing which are
indicated with solid lines.

As in the previous examples the chest will be kept upright, so the

position of the shoulders S t
→

( ), is defined as the position of the hip plus
the length of the chest on the x-axis:

S t H t l i
→

( ) =
⎯→⎯

( ) + ^
sd

The movement of the swing leg on XZ is defined as follows:

P t
P

H H
H t H P t H t( ) =

−
( ( ) − ), ( ) = 2 ( )x

x
max

x
max

x
min x x

min
z z

It can be seen that the trajectory of the swing leg P
⎯→⎯

is a

transformation of the trajectory of the hip H
⎯→⎯

, the parameter Px
max

is the maximum height that the foot can reach and it happens at the
middle of the stride. Hx z

min
, and Hx z

max
, represent the minimum and the

maximum position that the hip can reach on the x- and z-axes
respectively which are used to scale the movement of the swing leg.

In the case of the swing hand Msw, the component on the z-axis is
the same as the one of the swing foot. On the y-axis, a trajectory is
defined to travel from Mx

min to Mx
max height.

M t Pol M M t t M t P t( ) = ( , 0, , 0, , ), ( ) = ( )x
sw

x
min

x
max

z z
sw

z3

where x Pol x x x x t τ= ( , ̇ , , ̇ , , )τ τ3 0 0 describes the trajectory of third grade
polynomial equation with initial conditions x x( , ̇ )0 0 and final conditions
x x( , ̇ )τ τ which is valid for the time t τ0 ≤ ≤ . In the case of stance hand
Mst, the component on the z-axis is null because the stance leg is
always hold on the origin. On the y-axis the stance hand moves from
Mx

max to Mx
min to complete the cycle:

M t Pol M M t t M t( ) = ( , 0, , 0, , ), ( ) = 0x
st

x
max

x
min

z z
st

3

Since the trajectories are defined in task space, inverse kinematics

Fig. 7. Walking parameters.
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of each limb is used to calculate reference trajectory for each actuator.

4.3. Joint trajectories

The limbs, in the case of Johnny, were designed in such a way that
inverse kinematic would be easy to calculate, in Fig. 8 it can be seen
that each arm is a 2 dof manipulator and the legs are 3 dof manipulator
when the movement is restricted to the XZ plane.

Each limb forms a triangle, and the length of each side is known,
two of them are links of the robot and the remaining one es defined by
the position of the end effector (hip, swing foot or hands depending of
the limb).

The angular value of each corresponding joint can be calculated
with respect to the internal angles α and β, using cosine theorem, the
angle γ can be calculated with respect to the position of the end
effector:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟α t B C t A

BC t
β t A C t B

AC t
γ t

C t C t

( ) = arccos + ( ) −
2 ( )

, ( ) = arccos + ( ) −
2 ( )

, ( )

= atan2( ( ) , ( ) )z x

2 2 2 2 2 2

where A, B and C have the values in Table 1, depending on the limb,
with respect to the vectors defined in the previous section.

After the values of α t( ), β t( ) and γ t( ) are calculated for each
triangle, it is possible to see, based on Fig. 8, that joint position of
each actuator is given by the next expressions:

q t γ t β t q t γ t β t π
q t α t β t q t α t β t

q t α t γ t q t α t γ t π
q t γ t β t π q t γ t β t π

q t α t β t q t α t β t

( ) = ( ) + ( ), ( ) = ( ) − ( ) −
( ) = − ( ) − ( ), ( ) = ( ) + ( )

( ) = ( ) − ( ), ( ) = − ( ) − ( ) +
( ) = ( ) + ( ) − , ( ) = ( ) + ( ) −

( ) = − ( ) − ( ), ( ) = − ( ) − ( )

1 4

2 5

3 6

10 13

12 15

Until this point the trajectories of the limbs were defined on the XZ
plane, now the trajectories of the joints that generate movement
outside this plane will be defined on joint space.

Since Johnny is a 3D walker it is necessary to add lateral movement
on the ankles in order to avoid scuffing:

⎛
⎝⎜

⎞
⎠⎟q t q t q π t

t
( ) = ( ) = sinmax

z
0 7 0

where q max
0 is the maximum amplitude of the ankle.

On Johnny's design the orientation of the chest can be modified by
using joints q8 and q9 which are independent to the movement of the
legs. Frontal movement driven by q8 is useful to counter the torque
produced by the movement of the swing leg. The lateral movement of
the chest driven by q9 is also useful to reduce the torque needed on the
ankles in order to add lateral movement to the robot. These movements
are presented using sine function as follows:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟q t q π t

t
q t q π t

t
( ) = sin 2 , ( ) = sinmax

z

max

z
8 8 9 9

Adding lateral movement to stance arm can be useful in order to
decrease the torque produce by gravity on joint q10 however it can be
dangerous to add similar movement on swing arm because it can
collide with the chest. So the lateral movement of the arms is defined as
follows:

⎛
⎝⎜

⎞
⎠⎟q t q q π t

t
q t( ) = ( + )sin , ( ) = 0max max

z
10 9 0 13

It is necessary to remember that the same way that legs switch roles
depending on which foot is used as a supporting point, arms also switch
roles every step.

With respect to head trajectories it is considered that the movement
of joints q20 and q21 do not affect significantly energetic consumption
so there is no movement added to this joints. This way the parametric
walk shown depends on the next parameters: tz, Pl, Lz, η, Px

max,
Mx

max, Mx
min, q max

0 , q max
8 , q max

9 .

5. Walking optimization problem

The efficiency of a walking robot depends on many parameters,
considering the partial points of view mentioned in Section 1, these
parameters are classified in one of the next vectors:

Mechanical parameters Mp: In this vector we should include the
Denavit–Hartenberg parameters associated to the corresponding kine-
matic chain, in the case of our humanoid robot we select: length of the
thigh lth and shank lsh, length of the upper arm lua and forearm lfa,
position of the shoulder lsd and size of the hip lhp.

In order to modify the mass distribution of the legs, metal disks
were added to the thigh and shank, so we also include, in this vector the
diameter dm

1,2 and position lm
1,2 of the additional masses on the legs.

Finally we also include in this vector the Stiffness of the torsional
spring ks

i that we add on each joint in order to modify the natural
frequency of the system.

Gait parameters Gp: This vector include the parameters related to
walking trajectories, in this case we include: Step time tz, Extension of
the leg Pl, length of the step Lz, constant of energy lost η, Maximum
height of the foot Px

max, Maximum height of the hand Mx
max,

Minimum height of the hand Mx
min, Maximum lateral movement of

the ankle q max
0 , Maximum lateral movement of the chest q max

8 , and
Maximum frontal movement of the chest q max

9 .
Control parameters Cp: Feedback control will be used for each

actuator to track its corresponding trajectory son in this vector we
include PID gains for each joint: Proportional gain kp

i, integral gain ki
i

and derivative gain kd
i.

The dependency of the energy consumed by the robot Etr, on each
walking cycle, in terms of the global parameters vector P M G C= [ ]p p p

can be expressed in Eq. (14):

E f P= ( )tr (14)

Once the parameters vector P is specified, the gait model can be
evaluated to obtain walking trajectories, it is also possible to obtain
control signals of each actuator and calculate the energy consumed on
the stride, it is also possible to know the characteristics of the stride
such as distance traveled and forward velocity, additionally some

Fig. 8. Inverse kinematics.

Table 1
Inverse kinematic parameters.

Limb A B C(t)

Hip lth lth H t|
⎯→⎯

( )|
Swing foot lth lsh P t H t|

⎯→⎯
( ) −

⎯→⎯
( )|

Swing hand lua lfa M t S t|
⎯→⎯

( ) −
→

( )|
o

Stance hand lua lfa M t S t|
⎯→⎯

( ) −
→

( )|
e
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properties of the prototype can be obtained by passing the parameters
to the CAD model, like total height and weight of the mechanism and
the inertia properties of each limb.

Using energy consumption as optimization function will not
produce the desired gait but a position of stillness, which is the trivial
solution, were no energy is consumed at all. A better optimization
criterion is the one called Specific Cost of Transportation Ctr a quantity
commonly used to compare energy efficiency of walking robots.

C P E P
m P g d P

( ) = ( )
( ) ( )tr

tr

r tr (15)

This criterion includes not only the energy consumed, but also the
mass of the robot mr(P) and length of the step dtr(P) which also
depends on the parameter vector P, acceleration of gravity is repre-
sented by g.

By optimizing walking parameters with this criterion, low energy
consumption is patronized as well as long strides.

So formally the optimization problem is specified as follows:

C P r x P δ r x Pminimize ( )subject to | ( ( )) | ≤ , and | ( ( )) | < 1
P

tr 1 2 (16)

Here δ is the maximum error allowed between the initial conditions
of two consecutive steps, as measured in Eq. (3), which implies that the
trajectories of the robot should follow a fixed point, r2 is the stability
criterion described in Eq. (7), as initial conditions x dependent on the
selected gait parameters, we wrote x(P) to show this dependency.

6. Optimization method

When we face the problem of finding a local minimizer of a real
valued function and this function is differentiable, we can choose from
a wide selection of derivative based optimization methods. But when
derivative of the function is unknown we can solve the problem by
using direct search methods [21] or evolutionary computing [22].

The first time we intent to solve the walking optimization problem,
we implement the Nelder–Mead (N-M) method [23], a direct search
method that uses only function values, without any derivative informa-
tion, we add a basic constraint handling rule because this method is
intended to solve multidimensional unconstrained optimization pro-
blems.

N-M method uses at each step a simplex, which is a geometric
figure in n dimensions of nonzero volume that is a convex hull of n + 1
vertices, each one of these vertices is associated to a solution and its
value function, one or more of this vertices are compared to select an
operation to replace one of the vertices and modify the simplex, with
the pass of the iterations the vertices of the simplex converge to the
local minimum of the function.

As we define a more general problem N-M method became
inefficient. So we focus our attention on evolutionary computing, this
term now a days include most of the optimization techniques inspired
by the biological evolution that uses some nature mechanisms such as
mutation, recombination and selection. Among all the alternatives in
this field, we choose Genetic Algorithms (GA).

6.1. Genetic algorithms

A GA is a probabilistic iterative search method which allows to find
the optimal solution to multi-objective problems by convergence, this
means that the probabilities of finding the solution increase as the
iterations go by. GA as we know them nowadays were proposed by
John Holland [24] in the early 1960s. The applications of GA include
optimization problems, machine learning, pattern recognition, predic-
tion, etc.

GAs are a good alternative to face optimization problems where cost
function is not derivable or hard to calculate. These algorithms are
called genetics because they used a population of solutions coded in

binary sequences called genes. These solutions are improved over the
iterations by applying mathematical operators inspired by natural
evolution such as mutation, crossover, recombination and natural
selection. According to the operators used in the algorithm and the
way they are applied is possible to find the wide variety of GA that can
be found on the literature.

A basic GA can be described as follows:

1. Initialization: Randomly generate an initial population of indivi-
duals.

2. Evaluation: Calculate the fitness of each individual.
3. Selection: Probabilistically select the best individuals.
4. Crossover: Apply recombination operators to selected individuals in

order to generate a new population.
5. Mutation: Apply mutation operators on the new population.
6. Stop: Continue from step 2 until the stop criterion is satisfied.

The iteration form by steps 2–6 is called generation.

6.2. Implementation

On this application, the genotype that represents each individual is
generated by converting the values in vector P to binary chains and
concatenating them.

Initialization: To generate the initial population it is necessary to
calculate the total length Ltot of the genotype, which depends on the
number of parameters of the problem, the range each one of them
belongs to and the resolution specified to describe them. Then Tmax

empty genotypes are generated of Ltot length randomly specified with 1
and 0 values.

Evaluation: Fitness value F can be calculated based on the function
value of each individual, a higher fitness represent a better solution, so
given the fitness function:

F
C P

= 1
( )i

tr i (17)

It follows that a better solution is related to a larger value of the
fitness function. In order to evaluate an individual we need to decode
each segment of the genotype to the corresponding value of vector P,
the restriction function is evaluated directly.

Selection: The selection method used is called binary tournament
selection, we sort the individuals in a random sequence, then each pair
of individuals are compared, the best one is selected to become a
parent, we need to execute this process twice to obtain Tmax parents.

The criterion say that one solution is better than other depends not
only on the fitness value but also on the restriction value, we say a
solution is feasible if the restriction function is true and we say it is
infeasible if false. We use a rule call Superior of the feasible that is
described by Deb [25], which is useful even for multi-objective
problems, the explanation is as follows:

Case Action
Both are feasible Choose the fittest solution
One is feasible and the

other is not and
Choose the feasible solution

Both are infeasible Choose the solution with smaller re-
striction violation

Crossover: The recombination operator is the process used to
generate new individuals based on the information of the selected
parents. We used a basic operator called two-point crossover which
consist on generating the offspring by taking some genes of the mother
or by the father depending on the interval defined by two points,
randomly selected, in the genotype. There is a parameter of the GA
called crossover percentage p ∈ [0 1]cross , after selecting two parents, we
generate a random value r ∈ [0 1] if r p≤ cross the crossover operator is
execute otherwise the offspring are the same as their parents.
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Mutation: There is also a parameter of the GA called mutation
percentage p ∈ [0 1]mut , in this case we generate a random value
r ∈ [0 1] for each gene, when r p≤ mut we invert the value of the
corresponding gene. The mutation operator is included to guarantee
that all possible solution can be generated during the pass of the
generations.

Stop: Stop criterion depends on the user, sometimes it is defined in
terms of fitness value, or a diversity parameter in this case we define
max number of generations Gmax to limit the total time of execution.

Due to the crossover and mutation operators it is possible to lose
the fittest individual found on the previous generation. To avoid this
situation some GA's include a process called Elitism which consists on
comparing the fittest individual of the present generation and the one
of the previous generation, if this last one is better we include it in the
new generation by randomly select an individual to get replaced.

Due to the random processes involved in GA's is possible to
obtained different results on each execution of the program, also the
performance of the GA will depend on the problem and the selected
parameters: Tpop, Gmax, pcross and pmut.

7. Results

The parameters selected for the GA were: T = 32pop individuals,
G = 500max generations, p = 0.8cross and p = 0.01mut . For the restriction
we choose δ = 0.015

As the genetic algorithms works on a discrete search space we need
to define a set of admissible values for each one of the parameters in
vector P, this can be done by specifying a lower limit and an upper limit
as well as a resolution for each parameter. In Johnny's case, after
defining this limits, the size of the search space (the number of all
possible solutions) is 1.1517 × 10164.

Table 2 shows the admissible values that define the search space
and optimal values found after the execution of the GA.

The optimal gains found for the 16 actuators modeled are the next:

k

k

k

= [1.67 4.00 2.71 4.02 3.54 2.71 4.00 1.67 1.03 1.36 2.13 3.76

0.39 3.02 1.36 0.39]
= [4.35 0.77 3.04 4.48 0.62 3.04 0.77 4.35 4.86 4.56 0.70 2.78

2.93 1.34 4.50 0.51]
= [4.94 3.23 4.34 4.53 3.02 4.34 3.23 4.94 2.75 4.91 1.12 1.42

1.47 4.32 0.72 4.67]

p

i

d

With these parameters the Cost of transportation obtained is
C = 3.72tr and error at the end of the cycle is r x( ) = 0.01 rad (Fig. 9).
The length of the gait is 96 mm and it lasts for 0.633 s equivalent to a
speed of 0.15 m/s. The height of the robot is 890 mm and its weight is
3782 g. The information about the mechanical properties is obtained
automatically by using a link between the mathematical model and the
CAD software, this link allows to get the information about the inertia
tensor and the center of mass position of each limb for each individual
during the execution of the GA.

The average time cost for evaluating each individual is about 2 s, on
a commercial personal computer, which leads to a total time cost of
approximately 9 h using the mentioned parameters in the GA, the time
cost depends mainly on the accuracy chosen to integrate the mathe-
matical model and the time it takes for the CAD software to manipulate
and update the information about limb's parameters.

8. Conclusions and future work

By using Genetic Algorithms it was possible to optimize the
mechanical design of a 22 joint humanoid robot on a search space
which includes 13 × 1099 possible solutions. The use of GAs is fully
justified not only because of the dimension of the search space but also
because of the difficulty of the cost function which is not possible to be
represented as a differentiable function. The optimal solution refers to
minimum energetic consumption with maximum distance traveled
while respecting the constraints that define a Limit Cycle.

By using the optimal values found it was possible to build the
corresponding prototype called Johnny which is able to successfully
walk. Nowadays we are working on the measurement of the actual Cost
of Transportation of the real prototype in order to make a comparison
against the existing robots. We are also working on the design of a
global control law to improve stability of walking by using disturbance
rejection [26] and observer based techniques which allows the use of
inertial information of the robot to avoid falling.

Finally we are developing real-world applications for Johnny such
as manipulation and object recognition by using visual information,
these tasks involves autonomous walking and requires the robot to
learn at some level [27] how to move on unknown environments.

Table 2
Search space and optimal values.

Parameter Min Max Resolution Optimal Units
value value value

lth 174.2 204.2 0.5 202.2 mm
lsh 189.7 219.7 0.5 189.7 mm
lua 129.4 149.4 0.5 129.4 mm
lfa 109.7 129.7 0.5 128.2 mm
lsd 200.5 230.5 0.5 200.5 mm
lhp 127 147 0.5 127 mm

dm
1 20 50 0.5 23.5 mm

lm1 85.32 115.32 0.5 107.32 mm

dm
2 20 50 0.5 49 mm

lm2 59.53 109.53 0.5 101.53 mm

ks
1 0 10 0.001 3.71 × 10g

s2
9

ks
2 0 10 0.001 9.68 × 10g

s2
9

ks
3 0 10 0.001 0.59 × 10g

s2
9

ks
5 0 10 0.001 0.03 × 10g

s2
9

ks
6 0 10 0.001 9.35 × 10g

s2
9

ks
7 0 10 0.001 9.29 × 10g

s2
9

tz 0.3 0.7 0.001 0.633 s
Pl 350 400 1 390 mm
Lz 0 50 0.1 48.0 mm
η 0.01 1 0.01 0.94 mm
Px

max 2 20 0.01 3.39 mm
Mx

min 240 280 1 242 mm
Mx

max 200 240 1 223 mm

q max
0 0 5 0.01 4.98 deg

q max
8 0 5 0.01 1.07 deg

q max
9 0 5 0.01 2.67 deg

Fig. 9. Cost of transportation and restriction value.
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