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Due to their simplicity and operating mode, magnetic loops are one of the most used traffic sensors in Intelligent Transportation
Systems (ITS). However, at this moment, their potential is not being fully exploited, as neither the speed nor the length of the
vehicles can be surely ascertained with the use of a single magnetic loop. In this way, the vast majority of them are only being
used to count vehicles on urban and interurban roads. For this reason, in order to contribute to the development of new traffic
sensors and make roads safer, this paper introduces a theoretical study to explain the design and peculiarities of the innovative
double loops, how to calculate their magnetic field and three different methods to calculate their inductance. Finally, the different
inductance values obtained by these three methods will be analyzed and compared with experimental measurements carried out
by our research group in order to know which method is more accurate and if all of them are equally reliable.

1. Introduction

Magnetic loops are the most common sensors on roads
around the world since they are an affordable and highly
developed technology with a simple operation that is not
affected by environmental conditions [1–7]. Although these
ones imply to drill and work on the road for their installation
and possible future repairs like the rest of intrusive sensors
[8], in practice, magnetic loops still have a long future ahead.
Even though they might seem outdated, these are actually
a widely extended and well-known reliable technology that
offers good performance at a low price. Proof of this is that
today they continue to be installed on the roads and they are
even fundamental elements in the new algorithms for traffic
management [9–15].

Their operation is straightforward, since it is based on the
impedance variation that is recorded in the magnetic loops

during the passage of vehicles over them, and as shown in
Figure 1, an entire system usually consists of three parts [16]:

(I) A magnetic loop formed by a wire with one or more
turns superficially buried in the pavement.

(II) A cable that links the magnetic loop with the control
booth, which is also buried in the pavement.

(III) An electronic unit located in the control booth that
contains an oscillator and amplifiers to excite the
inductive loop.

In order to have a better understanding of how they work,
there are many publications and bibliography [1] since they
are one of the most widespread sensors. However, a brief
physical explanation is provided in the following points:

(i) The electronic unit together with the magnetic loop
forms an oscillator circuit.
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Figure 1: Magnetic loop system scheme.

(ii) The current which passes through the loop produces
a magnetic field 󳨀→𝐻 around the cable as shown in (1),
where 𝑁 is the number of turns of the loop, 𝐼 is the
current expressed in Amperes, and 𝑙 is the length of
the loop expressed in meters.

󳨀→𝐻 = 𝑁 ⋅ 𝐼𝑙 (1)

(iii) This magnetic field 󳨀→𝐻 produces a magnetic flux 0
through the loop as shown in (2), where 󳨀→𝐵 is the
magnetic flux density, 󳨀→𝑆 is the surface enclosed by the
loop, 𝜇𝑟 is the relative magnetic permeability of the
medium, and 𝜇𝑜 is a constant value (4𝜋 ⋅ 10−7 N / A2).

0 = 󳨀→𝐵 ⋅ 󳨀→𝑆 = 𝜇𝑟 ⋅ 𝜇𝑜 ⋅ 󳨀→𝐻 ⋅ 󳨀→𝑆 (2)

(iv) The result is that the inductance of a common single
loop 𝐿 expressed in Henrys is obtained as follows:

𝐿 = 𝑁 ⋅ 0𝐼 = 𝑁 ⋅ 󳨀→𝐵 ⋅ 󳨀→𝑆𝐼 (3)

In this way, when a vehicle or any object built with ferromag-
netic materials passes through the magnetic field generated
by a magnetic loop buried on the road with a surface area󳨀→𝑆 , a number of turns 𝑁, and a current intensity 𝐼 as shown
in Figure 2, there is a decrease in the global magnetic field
because of the currents that are induced in the vehicle.

As seen in (3), the loop inductance is proportional to the
magnetic flux, which causes that when passing a vehicle over
it, the inductance also decreases. Moreover, like any oscillator
circuit, the oscillation frequency of the whole system will be
given by

𝑓 = 𝑘𝐿 (4)

where 𝑘 is a constant that depends on the characteristics of
the electronic components used in the construction of the

Magnetic Flux

Inductive Loop

Figure 2: Magnetic loop operation mode.

oscillator circuit. Thus, when a vehicle passes over a loop,
we can obtain what is commonly known as “the vehicle
magnetic profile” or “the vehicle inductance signature” by
analyzing the inductance or frequency variation recorded.
This magnetic profile is different for each type of vehicle
as seen in Figure 3, which allows classifying the different
vehicles as motorcycles, cars, trucks and buses. However,
while the vehicle magnetic profiles for the single loops are
widely known, the magnetic profiles left by the passage of
vehicles over the double loops have not yet been studied,
although we can anticipate that these new magnetic profiles
will offer much more information than the previous ones.

To estimate the vehicle speed and classify them, nowadays
it is necessary to use two single loops, since a single one is
not able to get all the necessary parameters to do it. After
analyzing the magnetic profile, there are two unknown data
(vehicle length and vehicle speed) with the variation of a
single parameter (inductance or oscillation frequency).

For that reason, there are usually two loops per lane
separated by a certain distance. In this manner, the passage
of a vehicle over the first loop is recorded in the detector, and
after a short interval of time, the vehicle passes again over
the second loop where it is also recorded [8, 17]. Then, as the
distance between both loops is known by design, the vehicle
speed, the direction of traffic and the vehicle length can be
finally estimated, as well as the vehicle axle detection [14].
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Figure 3: Magnetic profiles. (a) Car. (b) Bus.

Nevertheless, with the use of the double loops this
problem would be solved and it would only be necessary
to use one loop to find out all the previous data, since
they have a simpler, more compact and more economical
electronics. Moreover, having a single signal instead of two
would facilitate the implementation of the measurement
system.

Therefore, our work will aim to present and describe the
characteristics of the double loop, to offer different methods
to calculate its inductance, to verify which one provides better
results and to improve the functional characteristics of the
popular single loops, which despite being the most installed
sensor on the roads, they are actually only dedicated to
count vehicles. The presentation of the new vehicle magnetic
profiles, the parameters that can be extracted with them and
the advantages offered over the conventional loop will be the
subject of the following paper.

2. Electromagnetic Analysis

The design, shape, and construction of a rectangular or
circular single loop are well-known worldwide [3]. However,
although every day there are more algorithms and new
systems to regulate traffic based on magnetic loops [18, 19],
the double loop capable of providing better performance than
the current loops at lower cost is still unknown.

A double loop is no more than the union of two rectan-
gular loops, which can have different dimensions and turns
(not to be confused with two single loops spaced at a certain
distance as described above). How to implement this type of
loop can be quite varied, but a classic way to proceedwould be
to build the outer loop and then a smaller inner loop located
at one extreme. However, another way to build it could be to
construct a small loop and then put another small one next to
the first one. In all cases, the direction of the current in each
loop can be chosen with the aim of generating different types
of configurations. At any rate, in our study we will present
a general theoretical analysis capable of simulating any type
of design. Therefore, in order to analyze this type of loop, the
space will be divided into three sections as shown in Figure 4.
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Figure 4: Double loop presented in three sections.

(i) The first section, 𝑆1, corresponds to the three red
segments located in the plane of the negative values of𝑋. Two segments parallel to the 𝑋-axis with a length
of 𝑎 and one segment parallel to the 𝑌-axis with a
length of 2𝑏.

(ii) The second section, 𝑆2, corresponds to the three
turquoise segments located in the plane of the positive
values of𝑋. Two segments parallel to the𝑋-axis with
a length of 𝑑 and one segment parallel to the 𝑌-axis
with a length of 2𝑏.

(iii) The third section, 𝑆3, corresponds to the blue segment
located on the 𝑌-axis at 𝑋 = 0 which has a length of2𝑏.

In this way, point 𝑃 where the magnetic field will be
calculated will be determined by its coordinates (𝑥, 𝑦, 𝑧).
Consequently and as shown in Figure 4, the distances from
any point of the double loop (𝑥󸀠 , 𝑦󸀠, 𝑧󸀠) to the point of analysis
of the magnetic field 𝑃(𝑥, 𝑦, 𝑧) will be defined as follows:

𝑟1𝑎 = √(𝑥 − 𝑥󸀠)2 + (𝑦 + 𝑏)2 + 𝑧2
𝑟2𝑎 = √(𝑥 + 𝑎)2 + (𝑦 − 𝑦󸀠)2 + 𝑧2
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𝑟3𝑎 = √(𝑥 − 𝑥󸀠)2 + (𝑦 − 𝑏)2 + 𝑧2
𝑟1𝑏 = √(𝑥 − 𝑥󸀠)2 + (𝑦 + 𝑏)2 + 𝑧2
𝑟2𝑏 = √(𝑥 − 𝑥󸀠)2 + (𝑦 − 𝑏)2 + 𝑧2
𝑟3𝑏 = √(𝑥 − 𝑑)2 + (𝑦 − 𝑦󸀠)2 + 𝑧2
𝑟1𝑐 = √𝑥2 + (𝑦 − 𝑦󸀠)2 + 𝑧2

(5)

In order to perform the electromagnetic analysis, the starting
point will be the physical phenomenon of magnetic field
generation due to the electrical currents flowing through
a conductor. Maxwell’s equations [20] revealed that the
divergence of 󳨀→𝐵 is zero:

󳨀→∇ ∙ 󳨀→𝐵 = 0 (6)

This indicates that 󳨀→𝐵 has the solenoidal property (with no
divergence), which means that the magnetic field 󳨀→𝐵 can be
represented using an auxiliary vector function 󳨀→𝐴 as follows:

󳨀→𝐵 = 󳨀→∇ 𝑥 󳨀→𝐴 (7)

And thus 󳨀→∇ ∙ (󳨀→∇𝑥󳨀→𝐴) = 0 (8)

The auxiliary vector 󳨀→A is called magnetic potential vector [21]
and it is related to the sources of the stable current density J
which are responsible for generating themagnetic field.Then,
in the case of a linear conductor, 󳨀→A is given by

󳨀→𝐴 = ∫
𝑙

𝜇𝑜𝐼𝑑 ̀𝑙4𝜋𝑟 (9)

where 𝐼 is the current in the linear conductor and 𝑟 is the
distance from the conductor to the analysis point. However,
(9) represents a solution for the case of thin conductors, but
the general solution must include a volumetric integral. In
this way, the magnetic potential vector for each segment of
our inductive double loop is obtained as follows:

Section 𝑆1
󳨀→𝐴1𝑠1𝑥 = 𝜇0𝐼4𝜋 ln

√(𝑥 + 𝑎)2 + (𝑦 + 𝑏)2 + 𝑧2 − 𝑎 − 𝑥
√(𝑥)2 + (𝑦 + 𝑏)2 + 𝑧2 − 𝑥

󳨀→𝐴2𝑠1𝑦 = 𝜇0𝐼4𝜋 ln
√(𝑥 + 𝑎)2 + (𝑦 − 𝑏)2 + 𝑧2 + 𝑏 − 𝑦
√(𝑥 + 𝑎)2 + (𝑦 + 𝑏)2 + 𝑧2 − 𝑏 − 𝑦

󳨀→𝐴3𝑠1𝑥 = 𝜇0𝐼4𝜋 ln
√𝑥2 + (𝑦 − 𝑏)2 + 𝑧2 − 𝑥

√(𝑥 + 𝑎)2 + (𝑦 − 𝑏)2 + 𝑧2 − 𝑎 − 𝑥

(10a)

Section 𝑆2
󳨀→𝐴1𝑠2𝑥 = 𝜇0𝐼4𝜋 ln

√𝑥2 + (𝑦 + 𝑏)2 + 𝑧2 − 𝑥
√(𝑥 − 𝑑)2 + (𝑦 + 𝑏)2 + 𝑧2 + 𝑑 − 𝑥

󳨀→𝐴2𝑠2𝑥 = 𝜇0𝐼4𝜋 ln
√(𝑥 − 𝑑)2 + (𝑦 − 𝑏)2 + 𝑧2 + 𝑑 − 𝑥

√𝑥2 + (𝑦 − 𝑏)2 + 𝑧2 − 𝑥
󳨀→𝐴3𝑠2𝑦 = 𝜇0𝐼4𝜋 ln

√(𝑥 − 𝑑)2 + (𝑦 + 𝑏)2 + 𝑧2 − 𝑏 − 𝑦
√(𝑥 − 𝑑)2 + (𝑦 − 𝑏)2 + 𝑧2 + 𝑏 − 𝑦

(10b)

Section 𝑆3
󳨀→𝐴1𝑠3𝑦 = 𝜇0𝐼4𝜋 ln

√𝑥2 + (𝑦 − 𝑏)2 + 𝑧2 + 𝑏 − 𝑦
√𝑥2 + (𝑦 + 𝑏)2 + 𝑧2 − 𝑏 − 𝑦 (10c)

In the previous expressions (𝐴 𝑖𝑠𝑗𝑘) it must be noted that, as
shown in Figure 4, the subindex 𝑖 refers to the considered
segment of the section 𝑠𝑗, which in turn corresponds to the
𝑘-axis. For example, 󳨀→𝐴3𝑠2𝑦 would mean the third segment of
section 𝑆2 located on the 𝑌-axis, and the values 𝑎, 𝑏 and 𝑑
would correspond to the dimensions of the loop described
above. However, before proceeding with the electromagnetic
analysis of the double loop, we will define a series of terms to
simplify the previous equations. These terms will be

𝑅1 = √𝑥2 + (𝑦 + 𝑏)2 + 𝑧2
𝑅2 = √(𝑥 − 𝑑)2 + (𝑦 + 𝑏)2 + 𝑧2
𝑅3 = √𝑥2 + (𝑦 − 𝑏)2 + 𝑧2
𝑅4 = √(𝑥 − 𝑑)2 + (𝑦 − 𝑏)2 + 𝑧2
𝑅1𝑎 = √(𝑥 + 𝑎)2 + (𝑦 + 𝑏)2 + 𝑧2
𝑅2𝑎 = 𝑅1

𝑅3𝑎 = √(𝑥 + 𝑎)2 + (𝑦 − 𝑏)2 + 𝑧2
𝑅4𝑎 = 𝑅3

𝑐1 = −𝑥
𝑐2 = 𝑑 − 𝑥
𝑑1 = −𝑏 − 𝑦
𝑑2 = 𝑏 − 𝑦
𝑐1𝑎 = −𝑎 − 𝑥
𝑐2𝑎 = 𝑐1
𝑑1𝑎 = 𝑑1

𝑑2𝑎 = 𝑑2

(11)
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In this way, combining (10a), (10b), and (10c) with (11), we
can obtain the magnetics potentials vectors in a simpler way
as seen in the following:

󳨀→𝐴1𝑠1𝑥 = 𝜇0𝐼4𝜋 ln
𝑅1𝑎 + 𝑐1𝑎𝑅2𝑎 + 𝑐2𝑎

󳨀→𝐴2𝑠1𝑦 = 𝜇0𝐼4𝜋 ln 𝑅3𝑎 + 𝑑2𝑎𝑅1𝑎 + 𝑑1𝑎

󳨀→𝐴3𝑠1𝑥 = 𝜇0𝐼4𝜋 ln
𝑅4𝑎 + 𝑐2𝑎𝑅3𝑎 + 𝑐1𝑎

󳨀→𝐴1𝑠2𝑥 = 𝜇0𝐼4𝜋 ln 𝑅1 + 𝑐1𝑅2 + 𝑐2
󳨀→𝐴2𝑠2𝑥 = 𝜇0𝐼4𝜋 ln 𝑅4 + 𝑐2𝑅3 + 𝑐1
󳨀→𝐴3𝑠2𝑦 = 𝜇0𝐼4𝜋 ln 𝑅2 + 𝑑1𝑅4 + 𝑑2

󳨀→𝐴1𝑠3𝑦 = 𝜇0𝐼4𝜋 ln
𝑅4𝑎 + 𝑑2𝑎𝑅2𝑎 + 𝑑1𝑎

(12)

For the section 𝑆1, located in the plane of the negative
values of 𝑋, the magnetic potential vector would have two
components, 𝑥 and 𝑦:

󳨀→𝐴𝑠1 = (󳨀→𝐴1𝑠1𝑥 + 󳨀→𝐴3𝑠1𝑥) 𝑥 + (󳨀→𝐴2𝑠1𝑦) 𝑦 (13)

For the section 𝑆2, located in the plane of the positive values
of 𝑋, the magnetic potential vector would also have two
components, 𝑥 and 𝑦:

󳨀→𝐴𝑠2 = (󳨀→𝐴1𝑠2𝑥 + 󳨀→𝐴2𝑠2𝑥) 𝑥 + (󳨀→𝐴3𝑠2𝑦) 𝑦 (14)

Nevertheless, in the case of the section 𝑆3, located on the axis𝑌 at 𝑋 = 0, it would only have component 𝑦:
󳨀→𝐴𝑠3 = (󳨀→𝐴1𝑠3𝑦) 𝑦 (15)

Thus, once the magnetic potential vector has been calculated,
the magnetic field could already be obtained by applying the
curl to the magnetic potential vector in the same way as (7).
However, with the aim of obtaining the total magnetic field,
the calculation must be performed for each loop section. In
this manner, the equations of the three sections are presented
in (16), (17), and (18) respectively.

Section 𝑆1−Negative Values of 𝑋
󳨀→𝐵 𝑠1𝑥 = 𝜇0𝐼4𝜋 [ 𝑧𝑅1𝑎 (𝑅1𝑎 + 𝑑1𝑎) − 𝑧𝑅3𝑎 (𝑅3𝑎 + 𝑑2𝑎)]
󳨀→𝐵 𝑠1𝑦 = 𝜇0𝐼4𝜋 [ 𝑧𝑅1𝑎 (𝑅1𝑎 + 𝑐1𝑎) − 𝑧𝑅2𝑎 (𝑅2𝑎 + 𝑐2𝑎)

− 𝑧𝑅3𝑎 (𝑅3𝑎 + 𝑐1𝑎) + 𝑧𝑅4𝑎 (𝑅4𝑎 + 𝑐2𝑎)]

󳨀→𝐵 𝑠1𝑧 = 𝜇0𝐼4𝜋 [( − (𝑥 + 𝑎)𝑅1𝑎 (𝑅1𝑎 + 𝑑1𝑎) + (𝑥 + 𝑎)𝑅3𝑎 (𝑅3𝑎 + 𝑑2𝑎))
− ( (𝑦 + 𝑏)

𝑅1𝑎 (𝑅1𝑎 + 𝑐1𝑎) − (𝑦 + 𝑏)
𝑅2𝑎 (𝑅2𝑎 + 𝑐2𝑎)

− (𝑦 − 𝑏)
𝑅3𝑎 (𝑅3𝑎 + 𝑐1𝑎) + (𝑦 − 𝑏)

𝑅4𝑎 (𝑅4𝑎 + 𝑐2𝑎))]
(16)

Section 𝑆2−Positive Values of 𝑋
󳨀→𝐵 𝑠2𝑥 = 𝜇0𝐼4𝜋 [ −𝑧𝑅2 (𝑅2 + 𝑑1) − 𝑧𝑅4 (𝑅4 + 𝑑2)]
󳨀→𝐵 𝑠2𝑦 = 𝜇0𝐼4𝜋 [ 𝑧𝑅1 (𝑅1 + 𝑐1) − 𝑧𝑅2 (𝑅2 + 𝑐2)

− 𝑧𝑅3 (𝑅3 + 𝑐1) + 𝑧𝑅4 (𝑅4 + 𝑐2)]
󳨀→𝐵 𝑠2𝑧 = 𝜇0𝐼4𝜋 [( (𝑥 − 𝑑)𝑅2 (𝑅2 + 𝑑1) − (𝑥 − 𝑑)𝑅4 (𝑅4 + 𝑑2))

− ( (𝑦 + 𝑏)
𝑅1 (𝑅1 + 𝑐1) − (𝑦 + 𝑏)

𝑅2 (𝑅2 + 𝑐2) − (𝑦 − 𝑏)
𝑅3 (𝑅3 + 𝑐1)

+ (𝑦 − 𝑏)
𝑅4 (𝑅4 + 𝑐2))]

(17)

Section 𝑆3− Axis 𝑌 at 𝑋 = 0
󳨀→𝐵 𝑠3𝑥 = 𝜇0𝐼4𝜋 [ 𝑧𝑅2𝑎 (𝑅2𝑎 + 𝑑1𝑎) − 𝑧𝑅4𝑎 (𝑅4𝑎 + 𝑑2𝑎)]
󳨀→𝐵 𝑠3𝑧 = 𝜇0𝐼4𝜋 [ 𝑥𝑅4𝑎 (𝑅4𝑎 + 𝑑2𝑎) − 𝑥𝑅2𝑎 (𝑅2𝑎 + 𝑑1𝑎)]

(18)

Hence, all this double loop electromagnetic analysis have led
us to the conclusion that the total magnetic field produced
by a double loop of dimensions 𝑎, 𝑑 and 2𝑏 at a certain
point 𝑃 (𝑥, 𝑦, 𝑧) as shown in Figure 4 will be the sum of
the components obtained in (16), (17), and (18).The resulting
expression is shown in the following:

󳨀→𝐵 = (󳨀→𝐵 𝑠1𝑥 + 󳨀→𝐵 𝑠2𝑥 + 󳨀→𝐵 𝑠3𝑥) 𝑥 + (󳨀→𝐵 𝑠1𝑦 + 󳨀→𝐵 𝑠2𝑦) 𝑦
+ (󳨀→𝐵 𝑠1𝑧 + 󳨀→𝐵 𝑠2𝑧 + 󳨀→𝐵 𝑠3𝑧) 𝑧̂ (19)

3. Experimental Measurements

After obtaining the expression that describes the magnetic
field generated by a double loop, the next step was to verify
that the theoretical results coincided with the experimental
ones. For this reason, a double loop was constructed in the
laboratory by our research team (Group of Traffic Control
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Figure 5: Outline of the double loop constructed.

System, ITACA Institute, Universitat Politècnica de València,
Spain). It was implemented with an external loop of𝑁1 turns
and, inside and over it, a smaller one of 𝑁2 turns located
in the negative half-plane, both with the same direction of
circulation. The scheme is shown in Figure 5.

With these conditions, we only were interested in the
component of the magnetic field perpendicular to the surface
of the loop (󳨀→𝐵𝑘), as the surface vector of the loop only
has component along the 𝑍-axis. Then, taking into account
the turns of each of the loop sections, this value was easily
obtained from (19) as follows:

󳨀→𝐵𝑘 = (𝑁1 + 𝑁2) ⋅ 󳨀→𝐵 𝑠1𝑧 + 𝑁1 ⋅ 󳨀→𝐵 𝑠2𝑧 − 𝑁2 ⋅ 󳨀→𝐵 𝑠3𝑧
(20)

3.1. Characteristics of the Double Loop Constructed. Con-
ductor type is tinned copper wire conductors individually
insulated with polyvinyl chloride with a cross section of0.28 𝑚𝑚2.

Number of turns is 4 exterior turns (𝑁1) of 1.20 𝑥 0.46 𝑚
and 5 interior turns (𝑁2) of 0.40 𝑥 0.46 𝑚.

Dimensions is 1.20 𝑥 0.46 𝑚.
With these values, the parameters of the loop according to

the nomenclature used in Figures 4 and 5would be as follows:

𝑎 = 0.40𝑚
𝑏 = 0.23𝑚
𝑑 = 0.80𝑚

(21)

3.2. Characteristics of the Signal Used to Energize the Loop.
Frequency of the signal applied to the loop is 139.2 𝑘𝐻𝑧.

Signal type is rectangular.
Current intensity through the loop (𝑅𝑀𝑆) is 51.80 𝑚𝐴.

3.3. Region Where the Readings of the Magnetic Field Were
Carried Out. Height above the plane of the loop is 0.0825 𝑚.

Position is along the𝑋-axis in the center of the loop (𝑌 =0).
With the above-mentioned characteristics, the theoretical

calculation in the region of the measurements was carried
out by applying and programming the expression obtained in

Figure 6: Exposure Level Tester ELT-400.

Figure 7: ELT-400 configuration.

(20) inMatlab ©, while the experimental measurements were
performed in our laboratory in order to verify the goodness
of the theoretical model developed for the calculation of the
double loop magnetic field. The instrument used to measure
this magnetic field was the Exposure Level Tester ELT-400
shown in Figure 6.

This device contains a series of turns with a diameter of0.125 𝑚 and measures the magnetic field by means of this
spherical sensor. It is able to detect frequencies from 1𝐻𝑧
to 400 𝑘𝐻𝑧, although this can be set as wished. To perform
the measurements, the ELT-400 was configured as shown in
Figure 7 and as follows:

Selected frequency range: 30 𝐻𝑧 − 400 𝑘𝐻𝑧.
Reading range: 320𝜇𝑇.
RMS signal value.
After collecting and processing all the information, the

comparison between the calculated and measured values of
the magnetic field as well as the tolerance of the measuring
instrument (±35 𝑛𝑇) was made, which is shown in Fig-
ure 8.

It can be observed that the differences between the
measured and calculated magnetic field values are, except in
specific points, within the tolerance range of the instrument.
The difference between the theoretical and measured values
within the contour of the loop is below 20%of the reading and
the mean value is below 8%. Therefore, it can be concluded
that the theoretical model for double loops developed in this
paper predicts with a good precision the behavior of the
magnetic field. In addition, different types of tests were also
carried out with other types of loops, both single and double,
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Figure 8: Calculated and measured values of the magnetic field |B|.
The instrument tolerance is also considered.

varying the type and amplitude of the applied current, and
very similar results were obtained.

4. Methods for Inductance Calculation

Throughout time, various methods to calculate the induc-
tance of magnetic loops according to different geometric
configurations have been proposed [22–28], such as the
Mills’ method based on Grover’s equations [22]. Most of
the mathematical expressions for these calculations appear
in classical texts [23] and based on these expressions, the
inductance values presented by other different models of
loops can be easily deduced.

However, the development of computer systems has
allowed to implement numerical methods that make use of
the intrinsic definition of the physical process of magnetic
induction. In this regard, it would be convenient to include
our previously presented work [25], in which the methods to
calculate the inductance of a rectangular loop were analyzed
and compared with other calculation techniques and real
measures.

In this way, this time we will present three methods to
calculate the inductance of the innovative double loops, since
there are no studies about them. Therefore, these methods
will be deeply analyzed and compared in order to knowwhich
method is more effective and if all of them are equally good.
These three methods are as follows:

(A) Electromagnetic Analysis Method
(B) Numerical Integration Method
(C) Mills and Grover’s Method

(A) Electromagnetic Analysis Method. The first method to
calculate the inductance of a double loop is based on the elec-
tromagnetic analysis, which considers the use of a numerical
method that employs the expression of the magnetic field
generated by a double loop. This means to carry out a study
applied to the case of a double loop with the same structure
as Figure 4.

Theprocedure starts bymaking use of the flux calculation,
since all the loopswork in the sameway.However, in this case,
themagnetic field and the fluxwill present some peculiarities.

The magnetic flux will be obtained as the integral of the
product of the magnetic field by the differential surface all
along the entire surface of the loop:

0 = ∫𝑆 󳨀→𝐵𝐾 ∙ 󳨀→𝑑𝑆 (22)

The expression of 󳨀→𝐵𝐾 used in (22), which only taken into
account the field in the 𝑍 direction, will be the same as in
(20), and the differential surface can be easily replaced by the
product of the differential length according to the𝑋-axis and𝑌-axis as shown in the following:

0 = ∫𝑆 󳨀→𝐵󳨀→𝑑𝑆 = ∫𝑑

−𝑎
∫𝑏

−𝑏
𝐵𝐾𝑑𝑦𝑑𝑥 (23)

To solve this expression, the integrals will be replaced by
summations. For this, it is necessary to obtain the magnetic
field in a series of points in space and consider a differential
surface 𝑑𝑦𝑑𝑥 around.

In this way, if we defined 𝑁𝑥 as the number of points in
which the magnetic field will be measured along the 𝑋-axis
and 𝑁𝑦 as the number of points in which the magnetic field
will bemeasured along the 𝑌-axis, the 𝑑𝑥 and 𝑑𝑦 differentials
of (23) would be given by the following:

𝑑𝑥 = 𝑑 + 𝑎𝑁𝑥

𝑑𝑦 = 2𝑏𝑁𝑦

(24)

Consequently, the total flux through the loop would be as
shown in the following:

0 = 𝑁𝑥−1∑
𝑛=1

𝑁𝑦−1∑
𝑚=1

𝐵𝐾 (−𝑎 + 𝑛𝑑𝑥, −𝑏 + 𝑚𝑑𝑦, 0) 𝑓𝑥𝑓𝑦𝑑𝑦𝑑𝑥 (25)

Summaries’ limits have been designed to prevent the mag-
netic field measurements on the conductors, since at these
points the value of 𝐵𝐾 presents a singularity. The summation
is extended to the rectangle defined by the points (−𝑎+𝑑𝑥, 𝑑−𝑑𝑥) in the𝑋-axis and (−𝑏 + 𝑑𝑦, 𝑏 − 𝑑𝑦) in the 𝑌-axis, but this
causes an error in the measurement that has been tried to be
solved by increasing the differential surface by 50%within the
limits of the summation points. For this reason, 𝑓𝑥 and 𝑓𝑦
factors have been introduced [23].The 𝑓𝑥 factor takes a value
1 in all points except in those where 𝑛 = 1 or 𝑛 = 𝑁𝑥 − 1
that has a value 1.5, and the 𝑓𝑦 factor also takes a value 1 in all
points except in those where 𝑚 = 1 or 𝑚 = 𝑁𝑦 − 1 that has a
value 1.5.

On the other hand, due to the abrupt change that appears
in the 𝐵𝐾 component of the magnetic field in the vicinity of
the conductors, it is evident the importance of choosing the
number of points 𝑁𝑥 and 𝑁𝑦. In our previous article [25], it
was shown that the optimal values of𝑁𝑥 and 𝑁𝑦 to minimize
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the error in the calculation of the inductance for a single
rectangular loop were given by

𝑁𝑥 = 𝑎 + 𝑑3𝑅𝐶

𝑁𝑦 = 2𝑏3𝑅𝐶

(26)

where𝑅𝑐 is the radius of the conductor used to build the loop
and 𝑎, 𝑑 and 2𝑏, the dimensions of the loop shown in Figures
4 and 5. However, in this case, the space has been divided
into three sections (two areas) as explained previously. For
the positive region of the 𝑋-axis the flux is concatenated by𝑁1 turns, and for the negative region of the𝑋-axis, the flux is
concatenated by𝑁1 ±𝑁2 turns as shown in Figure 5.The “+”
sign would be used when the current goes through both loops
in the same direction and the sign “−” when the current goes
through the loops in opposite directions. Therefore, we could
separate 𝑁𝑥 into two sections as shown in Equation (27),
which would represent the measured points, respectively, the
negative and the positive ones at the 𝑋-axis.

𝑁𝑥𝑎 = 𝑎3𝑅𝐶

𝑁𝑥𝑑 = 𝑑3𝑅𝐶

(27)

Finally, after all this mathematical and electromagnetic anal-
ysis, we could obtain the inductance of a double loop with
dimensions 𝑎, 𝑑 and 2𝑏 and with 𝑁1 and 𝑁1 ± 𝑁2 turns
respectively by the following expression:

𝐿0

= 1𝐼 [
[
𝑁𝑥𝑎−1∑
𝑛=1

𝑁𝑦−1∑
𝑚=1

(𝑁1 ± 𝑁2) 𝐵𝐾 (−𝑎 + 𝑛𝑑𝑥, −𝑏 + 𝑚𝑑𝑦, 0)

⋅ 𝑓𝑥𝑓𝑦𝑑𝑦𝑑𝑥 + 𝑁𝑥𝑑−1∑
𝑛=1

𝑁𝑦−1∑
𝑚=1

𝑁1𝐵𝐾 (𝑛𝑑𝑥, −𝑏 + 𝑚𝑑𝑦, 0)

⋅ 𝑓𝑥𝑓𝑦𝑑𝑦𝑑𝑥]
]

(28)

In this expression, 𝐼 represents the intensity used for the
calculation of the magnetic field and the rest of values
are known and have been described above. Nevertheless, it
should be pointed out that the result of this first method
will give the value of the inductance without considering the
thickness of the loop, since this method is based only on
the electromagnetic analysis of the magnetic field created by
a double loop. Therefore, in this first method the spacing
between the turns of the loop is considered null.

(B) Numerical Integration Method. After obtaining a first
way to calculate the inductance of a double loop that does
not take into account the spacing between turns, it seems
reasonable that the second presented method does. These
method, which apparently should provide more accurate

values, is the utilization of numerical integration techniques
but considering the size and spacing between the turns of
the loop (𝑆V). However, on this occasion the calculation will
be more complex than the last one, but these values are
supposed to be much more real, since in reality the cables
have a thickness that although it is minimal, it should be
contemplated.

For the purpose of calculation mentioned, it is assumed
an assembly in which the loops are stacked vertically. First,
the larger 𝑁1 turns would be installed and after, over them,
the smaller 𝑁2, assuming that are equi-spaced a distance 𝑆V.
In this way, for each turn of the loop, the flux through it would
be produced by the current that flows through the turn itself
plus the flux generated by each of the other turns of the loop
and which is concatenated by the one that is being analyzed.

The different flux components mentioned above will be
represented by the terms 0𝑖𝑗𝑘, where the subindex 𝑖 indicates
the type of loop which generates the field (1 Big, 2 Small), the
subindex 𝑗 indicates the type of loop which is crossed by the
magnetic field (1 Big, 2 Small) and the subindex 𝑘 indicates
the distance between the loop that generates de field and
the one which detects it. Hence, we can define the following
terms:

(i) 0110 is the flux generated by one of the turns of the
largest loops and which goes through them.

(ii) 0220 is the flux generated by one of the turns of the
smallest loops and which goes through them.

(iii) 011𝑖 is the flux generated by a big turn which goes
through the other big ones separated a distance 𝑖𝑆V.

(iv) 012𝑗 is the flux generated by a big loop which goes
through the other small ones separated a distance of𝑗𝑆V from the turn that has generated the flux.

(v) 022𝑘 is the flux generated by a small turn which goes
through the other small ones separated a distance of𝑘𝑆V.

(vi) 021𝑙 is the flux generated by a small loop which goes
through the other big ones separated a distance 𝑙𝑆V
from the turn that has generated the flux.

(vii) 𝑁𝑚𝑖𝑛 will be the minimum value between 𝑁1 and 𝑁2

and𝑁𝑚𝑎𝑥will be the maximum value between𝑁1 and𝑁2.

With this nomenclature, the inductance of the double loop
would be given by the following:

𝐿𝐼𝐼𝐶 = 1𝐼 [𝑁1∑
𝑖=0

(𝑁1 − 𝑖) 011𝑖 ± 𝑁2∑
𝑖=0

(𝑁2 − 𝑖) 022𝑖

+ 𝑁𝑚𝑖𝑛∑
𝑖=1

𝑖 (012𝑖 ± 021𝑖) + 𝑁𝑚𝑎𝑥∑
𝑖=𝑁𝑚𝑖𝑛+1

𝑁𝑚𝑖𝑛 (012𝑖 ± 021𝑖)

+ 𝑁1+𝑁2−1∑
𝑖=𝑁𝑚𝑎𝑥+1

(𝑁1 + 𝑁2 − 𝑖) (012𝑖 ± 021𝑖)]

(29)

The “+” sign would be used when the current goes through
both loops in the same direction while the sign “−” would
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be used when the current goes through the loops in opposite
directions. In any case, the fluxes described and shown in (29)
are given by the following:

011𝑖 = [
[
𝑁𝑥1−1∑
𝑛=1

𝑁𝑦1−1∑
𝑚=1

𝐵𝐾𝑅1 (−𝑑 + 𝑎2 + 𝑛𝑑𝑥, −𝑏 + 𝑚𝑑𝑦, 𝑖 ⋅ 𝑆V)

⋅ 𝑓𝑥𝑓𝑦𝑑𝑦𝑑𝑥]
]

022𝑖 = [
[
N󸀠𝑥1−1∑
𝑛=1

𝑁𝑦1−1∑
𝑚=1

𝐵𝐾𝑅2 (−𝑎2 + 𝑛𝑑𝑥, −𝑏 + 𝑚𝑑𝑦, 𝑖 ⋅ 𝑆V)

⋅ 𝑓𝑥𝑓𝑦𝑑𝑦𝑑𝑥]
]

012𝑖 = [
[
N󸀠𝑥1−1∑
𝑛=1

𝑁𝑦1−1∑
𝑚=1

𝐵𝐾𝑅1 (−𝑎2 + 𝑛𝑑𝑥, −𝑏 + 𝑚𝑑𝑦, 𝑖 ⋅ 𝑆V)

⋅ 𝑓𝑥𝑓𝑦𝑑𝑦𝑑𝑥]
]

021𝑖 = [
[
𝑁𝑥1−1∑
𝑛=1

𝑁𝑦1−1∑
𝑚=1

𝐵𝐾𝑅2 (−𝑑 + 𝑎2 + 𝑛𝑑𝑥, −𝑏 + 𝑚𝑑𝑦, 𝑖 ⋅ 𝑆V)

⋅ 𝑓𝑥𝑓𝑦𝑑𝑦𝑑𝑥]
]

(30)

In 011𝑖, 𝐵𝐾𝑅1(𝑥, 𝑦, 𝑧) is the magnetic field component along
the 𝑍-axis generated by a large turn, extending from −𝑎 to+𝑑 along the 𝑋-axis and from −𝑏 to +𝑏 along the 𝑌-axis at
the point of space (𝑥, 𝑦, 𝑧).

In 012𝑖, 𝐵𝐾𝑅1(𝑥, 𝑦, 𝑧) is also the magnetic field component
along the𝑍-axis generated by a large turn, extending from −𝑎
to +𝑑 along the 𝑋-axis and from −𝑏 to +𝑏 along the 𝑌-axis at
the point of space (𝑥, 𝑦, 𝑧).

In 022𝑖, 𝐵𝐾𝑅2(𝑥, 𝑦, 𝑧) is the magnetic field component
along the 𝑍-axis generated by a small turn, extending from−𝑎 to 0 along the 𝑋-axis and from −𝑏 to +𝑏 along the 𝑌-axis
at the point of space (𝑥, 𝑦, 𝑧).

In 021𝑖, 𝐵𝐾𝑅2(𝑥, 𝑦, 𝑧) is also the magnetic field component
along the 𝑍-axis generated by a small turn, extending from−𝑎 to 0 along the 𝑋-axis and from −𝑏 to +𝑏 along the 𝑌-axis
at the point of space (𝑥, 𝑦, 𝑧).

The values used in (29) and (30) (𝑁𝑥1,𝑁𝑦1, 𝑑𝑥, 𝑑𝑦,𝑓𝑥,𝑓𝑦)
are the same ones used to calculate the previous inductance
and 𝑁󸀠

𝑥1 takes the following value:

𝑁󸀠
𝑥1 = 𝑎3𝑅𝐶

(31)

As it can be seen, this method seems much more accurate
than the previous one, but it is true that there is a high amount
of operations and summations to perform, which will make
it more difficult to implement and with higher computational

cost. Therefore, taking into account the fact that the first
method did not consider spacing between the turns of the
loop, which is not physically correct, and that the second
method, although it does, is computationally complicated
because of the large number of operations and summations, it
leads us to think of a thirdmethod that also considers spacing
but is much simpler to implement.

(C) Mills and Grover’s Method. In order to calculate the
inductance of a double loop, Mills and Grover’s method will
be proposed. As said above, in this third and last method it
will be taken into account again that the size of the conductors
prevents all turns from being in the same coordinate 𝑍. To
consider this phenomenon, studies such as Mills’ emerged
[22, 28], from which new expressions of inductance were
deduced.

When working with double loops, the self-inductance of
the𝑁1 turns of the loop and, over them, the𝑁2 turns, equally
spaced a distance 𝑆V, is represented by the following:

𝐿𝑇 = 𝑁1𝐿10 ± 𝑁2𝐿20 + 𝑁1−1∑
𝑛=1

(𝑁1 − 𝑛)𝑀11 (𝑛𝑆V)

± 𝑁2−1∑
𝑛=1

(𝑁2 − 𝑛)𝑀22 (𝑛𝑆V)

+ 𝑁1∑
𝑛=1

𝑁2∑
𝑚=1

(𝑀12 (𝑆V (𝑁1 + 𝑚 − 𝑛))
± 𝑀21 (𝑆V (𝑁1 + 𝑚 − 𝑛)))

(32)

where

(i) 𝐿10 is the self-inductance of a rectangular loop with
only one large-size turn (𝑎 + 𝑑) 𝑥 2𝑏;

(ii) 𝐿20 is the self-inductance of a rectangular loop with
also only one small-size turn (𝑎 𝑥 2𝑏);

(iii) 𝑀11(𝑛𝑆V) is the mutual inductance between two turns
of a rectangular large loop separated between them at
a distance of 𝑛𝑆V;

(iv) 𝑀22(𝑛𝑆V) is the mutual inductance between two turns
of a rectangular small loop separated between them at
a distance of 𝑛𝑆V;

(v) 𝑀12(𝑆V(𝑁1 + 𝑚 − 𝑛)) are the mutual inductances
between a big-size turn and a small-size turn sepa-
rated at a distance of 𝑆V(𝑁1 + 𝑚 − 𝑛).

It must be noted that the above-mentioned parameters 𝐿10

and 𝐿20 are obtained as the sum of the internal and external
inductance of the conductors that constitute the loop as
follows:

𝐿0 = 𝐿0𝑖 + 𝐿0𝑒

𝐿10𝑖 = 2 (𝑎 + 𝑑 + 2𝑏) 𝐿 𝑖

𝐿20𝑖 = 2 (𝑎 + 2𝑏) 𝐿 𝑖

(33)

where 𝐿 𝑖 is the inductance per unit length, which must
consider the relationship between the inductance at a certain
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Figure 9: Features of two ideal parallel conductors of no straight
section for measuring mutual induction.
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Figure 10: Features of two parallel conductors to measure the
mutual induction.

frequency 𝐿 𝑖 and the inductance at low frequency 𝐿 𝑖0. In
order to carry out these operations, we will use Johnson’s
studies [23]. In this manner,

𝐿 𝑖 = 𝐿 𝑖0 ∙ 4𝑞 [𝑏𝑒𝑖 (𝑞) × 𝑏𝑒𝑖󸀠 (𝑞) + 𝑏𝑒𝑟 (𝑞) × 𝑏𝑒𝑟󸀠 (𝑞)
(𝑏𝑒𝑖󸀠 (𝑞))2 + (𝑏𝑒𝑟󸀠 (𝑞))2 ] (34)

where 𝑏𝑒𝑖(𝑞), 𝑏𝑒𝑟(𝑞), 𝑏𝑒𝑖󸀠(𝑞), and 𝑏𝑒𝑟󸀠(𝑞) are the imaginary
and real parts of the Bessel function of first order and their
derivatives, which are necessary for the calculationswhen this
method is applied. On the other hand, the inductance per
unit length at a low frequency is given by (35), but for copper
conductors it takes a value of 0.5 ⋅ 10−7𝐻/𝑚:

𝐿 𝑖0 = 𝜇0𝜇𝑟8𝜋 (35)

To obtain 𝐿𝑜𝑒 [22–27], we focus on the mutual inductance of
a pair of parallel conductors, whose expression is:

𝑀(𝑙, 𝑑) = ±𝜇0𝑙2𝜋
{{{
ln[

[
𝑙𝑑 + √1 + ( 𝑙𝑑)2]

]
− √1 + (𝑑𝑙 )

2 + 𝑑𝑙
}}}

(36)

As seen in Figure 9, 𝑙 is the length of the filaments and 𝑑 is
the separation between them (both quantities expressed in
meters), which results in an inductance expressed in Henrys.
This expression takes a positive sign when the current in both
cables has the same direction and takes a negative sign when
the current has opposite directions.

In addition, it is know that the external inductance of
a pair of parallel conductors with the dimensions shown in
Figure 10 is given by

𝐿𝑃 = 𝐿1 − 𝑀12 + 𝐿2 − 𝑀21 (37)

𝐿1 and 𝐿2 are the self-inductances of the simple conductors
and 𝑀12 and 𝑀21 are the mutual inductance measures
between the centers of the conductors, assuming a uniform
current distribution throughout the cross section of the
conductor. Mutual inductances have been considered to have
a negative sign as it has been assumed that the current in the
two conductors have opposite directions. Therefore, if both
conductors have the same dimensions:

𝐿 = 𝐿1 = 𝐿2 𝑎𝑛𝑑
𝑀 = 𝑀12 = 𝑀21

(38)

Thus:

𝐿𝑃 = 2 (𝐿 − 𝑀) (39)

The external self-inductance of a conductor is obtained
thanks to a method in which the conductor is replaced with
two conductors with a null straight section separated by a
distance equal to the radius of the conductor. In this waym

𝐿𝑃 = 2 (𝑀 (𝑙, 𝑅𝐶) − 𝑀(𝑙, 𝑑)) (40)

In addition, the inductance of a rectangular loop with a single
turn is given by the sum of the inductance of two pairs of
parallel conductors as follows:

𝐿0𝑒 = 𝐿𝑝1 + 𝐿𝑝2

𝐿0𝑒 = 2 [𝑀1 (𝑙1, 𝑅𝐶) − 𝑀1 (𝑙1, 𝑙2) + 𝑀2 (𝑙2, 𝑅𝐶)
− 𝑀2 (𝑙2, 𝑙1)]

(41)

where 𝑙1 = 𝑎 + 𝑑 and 𝑙2 = 2𝑏 for the big loop and 𝑙1 = 𝑎 and𝑙2 = 2𝑏 for the small loop.
As it can be deduced from this expression, the external

inductance of a rectangular loop with one turn is equal to the
mutual inductance of two identical coaxial rectangular loops
separated by a distance equal to the radius of the conductor.
In this way, the mutual inductance of two parallel rectangular
loops as shown in Figure 11 can be obtained from mutual
inductances between parallel conductors.

Therefore, the mutual inductance between the two rect-
angular loops with the same dimensions as shown in Figure 11
may be expressed as follows:

𝑀 = −2 [𝑀13 (𝐴,√𝐻2 + 𝐵2) − 𝑀11 (𝐴,𝐻)
+ 𝑀24 (𝐵,√𝐻2 + 𝐴2) − 𝑀22 (𝐵,𝐻)] (42)

In the above expression, the terms 𝑀𝑖𝑗 represent the mutual
inductance between the segment 𝑖 of the bottom loop and
the segment 𝑗 of the top loop. The reason to multiply the
expression by two is because the mutual inductances are all
symmetric, that is, for all 𝑖 and all 𝑗, 𝑀𝑖𝑗 = 𝑀𝑗𝑖.

On the other hand, to calculate the mutual induc-
tance between two parallel loops with different dimensions,
Grover’s equations must be used again, since they provide the
mutual inductance between two parallel straight conductors
as shown in Figure 12.
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Figure 12: Disposition of two parallel straight conductors.

According to Grover’s formula, the mutual inductance
between two parallel conductors with sizes 𝑙 and 𝑚 spaced
a distance 𝑑 and displaced at a distance 𝛿 is given by

𝑀𝐺 (𝑙, 𝑚, 𝑑, 𝛿) = 𝜇04𝜋 [𝛼 sinh−1 (𝛼𝑑) − 𝛽 sinh−1 (𝛽𝑑)
− 𝛾 sinh−1 (𝛾𝑑) + 𝛿 sinh−1 (𝛿𝑑) − √𝛼2 + 𝑑2

+ √𝛽2 + 𝑑2 + √𝛾2 + 𝑑2 − √𝛿2 + 𝑑2]
(43)

where

𝛼 = 𝑙 + 𝑚 + 𝛿,
𝛽 = 𝑙 + 𝛿,
𝛾 = 𝑚 + 𝛿

(44)

It should be pointed out that if the two conductors overlap
partially or totally, the parameter 𝛿 will have negative values.

In any case, from all these expressions it is finally possible
to obtain the inductance between two parallel rectangular
loops with different dimensions as shown in Figure 13, which
is simply another way of seeing Figures 4 and 5.

Therefore, the mutual inductance between the two paral-
lel loops is finally obtained as a sumof themutual inductances
of the parallel conductors where the terms 𝑀𝑖𝑗󸀠 represent
mutual inductances between two parallel rectilinear conduc-
tors with the same dimensions, and the terms𝑀𝐺𝑖𝑗󸀠 represent
the mutual inductances between two parallel rectilinear
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Figure 13: Disposition of two parallel loops of different dimensions.

conductors with different dimensions. This is shown in the
following:

𝑀𝐸𝐸̇ (𝑑, 𝑎, 2𝑏,𝐻)
= 𝑀11́ (2𝑏, √𝑑2 + 𝐻2)

− 𝑀13́ (2𝑏,√(𝑑 + 𝑎)2 + 𝐻2)
− 𝑀31́ (2𝑏,√𝑎2 + 𝐻2) + 𝑀33́ (2𝑏,𝐻)
+ 𝑀𝐺22́ (𝑑 + 𝑎, 𝑎, ℎ, −𝑎)
− 𝑀𝐺2 ́4 (𝑑 + 𝑎, 𝑎, √4𝑏2 + 𝐻2, −𝑎)
− 𝑀𝐺42́ (𝑑 + 𝑎, 𝑎, √4𝑏2 + 𝐻2, −𝑎)
+ 𝑀𝐺4 ́4 (𝑑 + 𝑎, 𝑎, ℎ, −𝑎)

= 𝑀11́ (2𝑏, √𝑑2 + 𝐻2)
− 𝑀13́ (2𝑏,√(𝑑 + 𝑎)2 + 𝐻2)
− 𝑀31́ (2𝑏,√𝑎2 + 𝐻2) + 𝑀33́ (2𝑏,𝐻)
+ 2𝑀𝐺22́ (𝑑 + 𝑎, 𝑎, ℎ, −𝑎)
− 2𝑀𝐺2 ́4 (𝑑 + 𝑎, 𝑎, √4𝑏2 + 𝐻2, −𝑎)

(45)

Although this last equation may seem complicated and with a
large number of operations, it should not be forgotten that in
none of the previous expressions there are integrals or sum-
mations. The maximum operations that appear are square
roots and trigonometric functions. Therefore, it apparently
seems to be the method that best behaves computationally.
Moreover, this also considered spacing between the turns of
the loop as the second one.

Thus, once all methods have been presented, the induc-
tance values obtained are going to be compared to each other
to verify the similarity between them and know which the
best methods are and which are not.
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5. Results and Discussion

After making the description and performing the analysis
of the three methods, the first thing that stands out is that
there are two methods that consider the spacing between
the turns (𝑆V) and one which does not. For that reason,
what would be expected at first sight is that the accuracy
and complexity of the two methods which do consider this
are greater than the method which does not. Therefore, the
inductance values obtained by using the electromagnetic
analysis method should provide different values than the
other ones, but a simple explanation for this phenomenon
would be the fact of not having considered the flux lines that
are lost between the loops because of the fact that they have a
real thickness which is not zero.

To check all of the above, various test related to the
inductance values of the different methods and types of loops
were performed and are presented below. In fact, it was
studied the effect of increasing the number of turns in a
single and in a double loop and the effect of changing the
dimensions of a double loop.

5.1. How the Number of Turns Affects the Value of the
Inductance of a Single Loop. For the purpose of this study, a
single 2𝑥2 loop located and centered in the 𝑋𝑌 plane with
a cable radius of 0.75𝑚𝑚 and a turn spacing of 1.9𝑚𝑚 was
used. In this first test, the number of turns of the loop was
gradually increased to see the effect that it has on the value of
its inductance.With the nomenclature described in the paper,
the characteristics of this loop were as follows:

(i) 𝑎 = 1 𝑚𝑒𝑡𝑒𝑟
(ii) 𝑏 = 1 𝑚𝑒𝑡𝑒𝑟
(iii) 𝑑 = 1 𝑚𝑒𝑡𝑒𝑟
(iv) 𝑁1 = 𝐹𝑟𝑜𝑚 1 𝑡𝑜 7
(v) 𝑁2 = 0

As mentioned, in the ideal case it would be expected for
the three methods to provide similar results, but it is clearly
observed in Figure 14(a) that there are two methods that are
practically identical, and one method whose results are far
from the other ones. Therefore, the first point to emphasize
is that the Mills and Grover’s method and the numerical inte-
gration method, those that consider the separation between
turns, provide good and identical results, while the method
based on the electromagnetic analysis begins to fail when the
turns increase.

This means that the more turns the loops have, the more
different the results are, because the error of not considering
separation between turns increases for each turn.

5.2. How the Number of Turns Affects the Value of the
Inductance of a Double Loop. The next test was the same as
the previous one but instead of working with a single loop,
we will work with a double loop. This time, it was a double2𝑥2 loop formed by an external loop of 𝑁1 turns located
and centered in the 𝑋𝑌 plane and a smaller one of 𝑁2 turns
located in the half-plane of the negative values of 𝑋, both

with a cable radius of 0.75𝑚𝑚 and a turn spacing of 1.9𝑚𝑚.
In the previous analysis, only the number of turns 𝑁1 was
varied since it was a single loop and 𝑁2 = 0. However, as
we were working with a double loop, to check the effect of
increasing the number of turns, the value of𝑁1 was kept fixed
and 𝑁2 was the value that we were gradually increasing. In
this way, with the nomenclature described in the paper, the
characteristics of this double loop were as follows:

(i) 𝑎 = 1 𝑚𝑒𝑡𝑒𝑟
(ii) 𝑏 = 1 𝑚𝑒𝑡𝑒𝑟
(iii) 𝑑 = 1 𝑚𝑒𝑡𝑒𝑟
(iv) 𝑁1 = 3
(v) 𝑁2 = 𝐹𝑟𝑜𝑚 1 𝑡𝑜 7

The result obtained was really similar to the previous one.
As it can be seen in Figure 14(b), the two methods that
consider spacing provided practically identical values, while
the electromagnetic analysis method, as it does not, provided
different values, this time greater. The fact that the results
were even greater is because as we had concluded before,
the more turns the loops have, the more different the results
are, and there are more turns in a double loop (𝑁1 in the
first loop and 𝑁1 + 𝑁2 in the second one) than in a single
one (only 𝑁1). Thus, at this point we could already begin to
draw conclusions, but in order to make a study as rigorous as
possible, we will show more results from our analysis.

5.3. How the Dimensions of the Loop Affect the Value of the
Inductance of a Double Loop. Once we had analyzed how
the number of turns affects the inductance value, in the
two remaining experiments we analyzed what happens when
varying the dimensions of the loops. For this purpose, we
workedwith a double loop formed by𝑁1 large turns, centered
with respect to the 𝑌-axis, extending from −𝑎 to +𝑑 along the𝑋-axis, and 𝑁2 small turns, also centered with respect to the𝑌-axis, extending from −𝑎 to 0 along the 𝑋-axis. Both had
a cable radius of 0.75𝑚𝑚 and a turn spacing of 1.9𝑚𝑚. In
this way, the number of turns was kept fixed and the value
that we varied was the length 𝑎, which means increasing the
length of the smallest loop, which has 𝑁2 turns and is located
in the negative half-plane. In addition, it should be noted that
this fact also increases the length of the biggest loop, since its
dimensions are (𝑎 + 𝑑) 𝑥 2𝑏. Then, with the nomenclature
described in the paper, the characteristics of this loop were as
follows:

(i) 𝑎 = 𝐹𝑟𝑜𝑚 1 𝑡𝑜 10 𝑚𝑒𝑡𝑒𝑟𝑠
(ii) 𝑏 = 1 𝑚𝑒𝑡𝑒𝑟
(iii) 𝑑 = 1 𝑚𝑒𝑡𝑒𝑟
(iv) 𝑁1 = 3
(v) 𝑁2 = 2

In Figure 14(c) it can be observed very clearly that although
the trend of the three methods was the same, the results were
different. Mills and Grover’s method as well as the numerical
integration one had a practically linear relationship between
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Figure 14: Inductance values. (a)When increasing the number of turns in a single loop. (b)When increasing the number of turns in a double
loop. (c) When increasing the length of “a” in a double loop. (d) When increasing the length of “d” in a double loop.

the increase of 𝑎 and the increase of the inductance. However,
it is noted that the first method, which had extracted its
equations from the analysis of the electromagnetic field
without considering spacing, gave results distant from the
real ones from the beginning, being this error greater as the
length of 𝑎 is bigger.

On the other hand, after analyzing what happens when
the length of 𝑎 is increased, it was analyzed what happens
precisely if we increase the length of 𝑑, with whose variation
we only be modify the length of the largest loop. The double
loop was again formed by 𝑁1 large turns, centered with
respect to the 𝑌-axis, extending from −𝑎 to +𝑑 along the 𝑋-
axis, and 𝑁2 small turns, also centered with respect to the

𝑌-axis and extending from −𝑎 to 0 along the 𝑋-axis. Both
had a cable radius of 0.75𝑚𝑚 and a turn spacing of 1.9𝑚𝑚.
The number of turns was kept fixed again and the value
that we varied was 𝑑. In this manner, with the nomenclature
described in the paper, the characteristics of this loop were as
follows:

(i) 𝑎 = 1 𝑚𝑒𝑡𝑒𝑟
(ii) 𝑏 = 1 𝑚𝑒𝑡𝑒𝑟
(iii) 𝑑 = 𝐹𝑟𝑜𝑚 1 𝑡𝑜 10 𝑚𝑒𝑡𝑒𝑟𝑠
(iv) 𝑁1 = 3
(v) 𝑁2 = 2
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In this test, it was seen how two methods followed the same
trend again, providing almost the same results, but the other
one did not behave properly. However, in Figure 14(d) it
is clear that Mills and Grover’s method and the method of
numerical integration provide exactly the same values and the
electromagnetic analysis method does not.

Therefore, after analyzing the previous results, we could
conclude that of the threemethods proposed, the electromag-
netic method could be useful for very thin conductors with
little separation between them and for complex geometries in
which Mills and Grover can not be used, as it only serves for
parallel and perpendicular conductors. When it was tried to
increase the turns of the loop, it was the only one that differed
from the rest. On the other hand, when the length of the loop
was increased, it was also evident that this method did not
behave correctly. For this reason, we can affirm that although
it is a valid method and can give us an approximation if the
separation between turns is big, it should be only used as a
reliable source if that separation is minimal.

Regarding the two remaining methods, it must be noted
that both offer good and similar results as it can be seen in
Figures 14(a), 14(b), 14(c) and 14(d), but in the case of having
to opt for one of them, wemust emphasize that the numerical
integration method carries amuch higher computational cost
than theMills andGrover’s one. In fact, it is clear by observing
Figure 14 that this method had the best behavior in every of
the cases. Then, we could conclude that because of its low
computational cost and extreme accuracy, Mills and Grover’s
method would be the best way of calculating the inductance
of a double magnetic loop, which is why it will be the one that
we will use in our simulation programs.

6. Conclusions

This article is aimed to be a presentation of the double loop,
where geometry, construction, operating mode and three
possible ways to calculate its inductance have been explained.
After presenting these three above-mentioned methods, an
analysis has clarified that if precision is required, Mills and
Grover’s method or the numerical integration method must
be used, as they both take into account the separation
between turns, although we recommend to choose the first
one because of its low computational cost.

In future papers, we will focus more closely on the
advantages offered by using this type of loops, what will help
to understand the need and importance of this paper. It will
focus on the new vehicle magnetic profiles, the parameters
that can be extracted from them and the benefits of using
them in comparison with the conventional loops.

The reality is that magnetic loops, despite being from the
eighties, are still the most used technology to capture data
from traffic. For that reason, we must improve the existing
infrastructure and provide this sensor with greater potential
and reliability.
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