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An Intelligent Compensation Through B-Spline

Neural Network for a Delta Parallel Robot

Jonatan Martı́n Escorcia-Hernández1, Hipólito Aguilar-Sierra 1, Omar Aguilar-Mejı́a 2,
Ahmed Chemori 3, and José Humbérto Arroyo-Núñez 1.

Abstract—In this paper a PD controller with intelligent com-
pensation is used to solve the problem of tracking trajectories for a
Delta Parallel Robot with three degrees of freedom. This controller
uses an artificial B-Spline neural network as a feedforward com-
pensation term. To evaluate the proposed controller performance
some numerical simulations under two different scenarios have
been carried out in order to know its effectiveness respect to a
simple PD controller.

Index Terms—Delta Parallel Robot, Learning systems, Trajec-
tory tracking

I. INTRODUCTION

The Delta Parallel Robot (DPR) was invented in the early
80’s by Reymond Clavel (a professor at EPFL - Ecole Poly-
technique Federale de Lausanne) [1]. This robot is mainly used
in Pick and Place applications requiring high speed and good
precision. The main industries where this type of robot is used
are food, pharmaceutic, electronic, among others [2]. Devices
based on DPR have also been used as 3D printers or haptic
interfaces [1], [3].
For parallel robots, several control techniques have been imple-
mented: nonlinear control, intelligent control, robust control,
or a combination of the above to regulate the tracking of
complex trajectories [4]. The Proportional-Integral-Derivatives
controllers (PID) has been widely used in the industry for
its simplicity and good performance [5]. However, the perfor-
mance of the PID controller on DPR decreases due to internal
disturbances caused by the set of closed kinematic chains [6],
[7]. One of the main causes of the poor performance of the
PID controller is due to the controller gains being calculated
arbitrarily or by trial and error. The computed torque control is
another control technique regularly used in parallel robots; this
technique is based on inverse dynamics, so it is necessary to
have knowledge of the matrices that make up the dynamics
of the robot, [8], [9]. In [6] a fuzzy controller is used to
regulate trajectory tracking of a DPR; in this controller the
parameters of the fuzzy controller are adjusted by a particle
swarm optimization algorithm. Although the results based on
the fuzzy logic controller present a good performance in a
closed loop, many problems related with the fuzzification rules
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exist, for example the defuzzification operations are unclear;
besides this, operations demand high computational processing
capacity. Due to the complexity of the dynamic model of
DPR, some terms of the dynamic model are unknown, whereby
control techniques are used based on state observers. In [7]
an active disturbance rejection control (ADRC) is used, where
the unknown terms are estimated by high gain observers. The
ADRC cancels the effects produced by internal or external dis-
turbances in the DPR and compensates the effects produced by
unknown dynamics to decrease steady-state error. However the
accuracy estimation of unknown parameters depends on a good
tuning process at the gains [7], [10]. In [11] a hybrid controller
is used based on two controllers that work in parallel. The first
controller has the function of regulating the joint acceleration of
DPR through a disturbance observer. The second controller is
a sliding mode controller, which imposes the desired dynamic
of the tangential, normal and bi-normal components of the
tracking error signal, with the purpose of reducing the path
tracking contour error. A drawback that the variable structure
controllers show is the effects in the response, which is due to
high switching frequencies.
The artificial neural networks (ANN) are used in the automatic
control area to recognize parameters of nonlinear systems,
adaptive control systems design, and intellient compensators
[12]. Since the end of the 20th century, the use of ANN has
been increasing in several areas of knowledge due to its great
capacity to adapt to various engineering problems and industrial
applications [13]. Controllers that use ANN are employed
to regulate nonlinear systems due to parametric uncertainty,
unknown dynamic, and high coupling between state variables
in the mathematical model of the system [14]. Artificial neural
networks of instant learning exist, such as B-Spline Neural Net-
works (BSNN), that have favorable aspects and characteristics
compared with other intelligent networks such as the back-
propagation (BP) ANN and the radial base function (RBF)
ANN [15]. The main advantage of the BSNN with respect to
another ANN is that the control law is adapted every moment in
the online process, while the other types need a previous offline
training. The drawback of offline training is if the operating
condition changes, it is necessary do another offline training
again [16]. BSNN can be defined as a system that converts
input patterns to their corresponding weight without performing
many operations. It should be mentioned that the ANN BP
and RBF need an offline training before implementing in the
experiment or prototype. This situation requires more execution
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time and more number of operations, and sometimes it does
not converge to a solution for the system. Whereby the BSNN
is a great alternative for robust control applications, adaptive
filters, real-time control, nonlinear systems modeling, pattern
recognition, among others. With the training strategy online, it
ensures the modification of the weights of the ANN so that the
DPR follows the path under different operating conditions.
In this paper a control scheme based on a BSNN of instant
training is proposed to regulate the trajectory tracking of a
DPR. The BSNN is used as a feedforward compensation term
in order to reduce the trajectory tracking error for a Pick and
Place task.
The organization of this paper is as follows: In Section II the
inverse dynamic model of DPR is presented. In Section III the
proposed PD controller with BSNN compensation is described
in detail. Section IV describes the simulation results of the PD
BSNN controller whose performance is compared versus the
performance of a simple PD controller. Finally the conclusions
of this paper are given in Section V.

II. DYNAMIC MODEL OF THE DPR

The DPR consists essentially of two platforms, the base or
fixed platform and the mobile platform; both are joined by
three kinematic chains, each kinematic chain consists of two
parts, the arm and the forearm. The robot arms are mounted
directly to the actuators in the fixed platform through rotational
joints. The robot forearms consist of two parallel bars, which
connect the arm with the mobile platform via ball joints; the
end-effector is located on the mobile platform. The dynamic
model is represented in the joint space whose variables are
denoted as q = [q1 q2 q3]T . The schematic diagram of a
DPR kinematic chain is show in Fig. 1. The inverse dynamic

model for the DPR has been taken by the work developed by
[17]. Some simplifications for the dynamic model have been
taken into account, these simplifications are discussed in more
detail in these works [18], [19].

• The frictional forces of all types, whether dry or viscous,
are neglected.

• The forearms mass are smaller than other DPR parts, its
inertia can be neglected hence, forearm mass is divided in
to two parts, one is added to DPR arm mass and the other
part is added to the mobile platform mass.

Two different forces can be distinguished acting on the mobile
platform. The gravity force which can be expressed by:

GP = −MpG (1)

where Mp = diag([mt mt mt]) with mt = mp + 3
mfa

2 ,
mp is the mobile platform mass, and mfa is the forearm mass.
The gravity vector G ∈ R3×1 is given by G = [0 0 g]T

with g = 9.81 m/s2.
The inertial forces on the mobile platform due to the Cartesian
acceleration Ẍ ∈ R3×1 are:

Fp = MpẌ (2)

The torque contributions of Gp and Fp to each motor located
in the base denoted by TGp and TFp can be calculated using
the inverse Jacobian matrix Jinv(q,X) ∈ R3×3

TGp = −JT
invMPG (3)

TFp = JT
invMpẌ (4)

The acting forces on the DPR arms are the torque produced
by the motors τ ∈ R3×1, the torque due to the acceleration of
the arms TAA ∈ R3×1 and torque due to gravity on the arms
TAG ∈ R3×1; each contribution is represented as follows:

TAA = IAAq̈ (5)

IAA ∈ R3×3 is a diagonal matrix whose elements of the
diagonal are formed by:

Iaa = Iact + Iarm +
L2
imf

2
(6)

Where Iact, Iarm are the inertia of the actuators and the inertia
of the arms, respectively and Li is the arm length. The torques
produced by the gravitational forces acting on the arms are
given by

TAG = −MRag cos(q) (7)

MRa = diag([mra mra mra]) (8)

cos(q) = [cos(q1) cos(q2) cos(q3)]T (9)

Where mra = maLc +
mfaL

2 , Lc is the length to the center of
mass of one arm, and mfa is the mass of the forearm.
Applying the virtual work principle, which states that the sum
of all non-inertial forces must be equal to the sum of all inertial
ones, we obtain:

τ − TGp − TAG = TAA + TFp (10)



TABLE I
DPR GEOMETRIC PARAMETERS

Parameter Description Value

L Arm length 0.3 m
l Forearm length 0.624 m
Rb Base platform radio 0.1267 m
Rp Mobile platform radio 0.0497 m

TABLE II
DPR DYNAMIC PARAMETERS

Parameter Description Value

mp Mobile platform mass 0.19 Kg
ma Arm mass 0.29 Kg
mfa Forearm mass 0.28 Kg
Iarm Arm inertia 0.0213 Kgm2

Iact Motor inertia 3.8 ×10−6 Kgm2

To express only the dynamic model in the joint space, we
proceed to use the following relationship:

Ẍ = Jinv q̈ + J̇inv q̇ (11)

Rearranging the terms, the inverse dynamic model of the DPR
can be written into the standard joint space form as follows:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (12)

where:
• M(q) = IAA + JT

invMPJinv
• C(q, q̇) = JT

invMP J̇inv
• G(q) = TGP + TAG

The DPR kinematic and dynamic parameters are shown in
Tables 1 and 2 respectively.

III. CONTROL STRATEGY

The control law for the DPR is given as follows:

τ = Kpeq(t) +Kdėq(t) + σ̂(eq) (13)

where Kp ∈ R3×3 , Kd ∈ R3×3 are diagonal positive
definite matrices which are the feedback gains proportional
and derivative respectively; the joint tracking error expression
is given by eq(t) = qd(t) − q(t) where qd(t) ∈ R3×1 and
q(t) ∈ R3×1 are the desired joint trajectory and the measured
joint position respectively.

The parts that integrate the structure of the BSNN are divided
in three main parts, defined as follows: A l-dimensional space
to normalized inputs, a set of base functions, and the output
function of the BSNN. Fig. 2 shows the main components
that make up the BSNN and Fig. 3 shows the whole DPR
control diagram. The main elements in the BSNN structure are
the base functions, which are specified from a set of control
point vectors. The Base functions of the BSNN are obtained
using a periodic expression described by different authors [20],
[21]; these functions are numerically stable, computationally
efficient, and can deal with any strategic distribution of control
points which are determined in an off-line process and must be
delimited according to the possible BSNNs input values.
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Fig. 2. Diagram of the proposed BSNN used as a compensation term for a
PD controller
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The output of the BSNN is obtained through a linear combina-
tion of the base functions’ outputs. Another important aspect
of the BSNN is that the instant training is simply a linear
optimization problem because the adjustable weights (wi) are
linear coefficients, which makes the output linearly dependent
on the set of weights [22]. The output of the BSNN can be
written as [23]:

σ̂i =

P∑
i=1

aiwi = aTw (14)

where a is a P -dimensional vector which contains the outputs
of the base for P = 1, ..., 4 and, w is the weights vector. The
B-Spline base function is defined in the following form [24]:

ajK(eq) =

(
e− λj−K

λj−1 − λj−K

)
aj−1
K−1(eq)+(

λj − eq
λj − λj−K+1

)
ajK−1(e)

aj1(eq) =

{
1 if eq ∈ Ij
0 other case

(15)

where λj is the j-th control point and Ij = [λj−1, λj) is the
j-th interval for j = 1, ...4, and K is the B-Spline function
order which can take values of 1 to 4. The values for each
control point λj are defined according to the range of possible
values of the error signal.

A. Learning rule

The performance function establishes the type of learning
rule, computational complexity and final model. In this paper a
simple learning rule is required for its implementation, whereby
a performance function of medium quadratic error (MQE) is



selected because it provides excellent results in most cases [15].
The rules of instant learning are formulated by minimizing
the instantaneous estimation of a MQE output performance
function and the parameters are upgraded using the downward
gradient rules. The gradient method can be implemented in two
different ways: a) batch learning and b) online learning. Batch
learning corresponds to the standard gradient method, where the
network weights are updated only once in each iteration of the
training process, after all learning examples are procesed by the
network [25]. The online training is a variation of the standard
gradient method, where the networks weights are upgraded
after every learning example is processed. For this case we
chose to implement the online learning method. In neural
networks computational engineering, the gradient method is
commonly employed due to its simplicity and efficiency [26].
In the neuro-controller design, rules of downward gradient are
used, and the updating of the weights ∆W(t− 1) is done by
means of an instant learning rule, as follows [23], [27]:

∆W(t− 1) =
γσ̃(t)

||a(t)||22
a(t) (16)

where γ is the learning relationship, a is the vector that contains
the output of the base functions, W is the weights vector, and
σ̃(t) = σ(t)− σ̂(t), where σ(t) and σ̂(t) are the actual output
and the desired output of the BSNN respectively.

IV. SIMULATION AND RESULTS

The performance of the proposed PD controller with BSNN
compensation is evaluated using a trajectory for a Pick and
Place task. This trajectory is generated using polynomial inter-
polation of degree five [28], [29]. The function is given in this
form:

xf = xi + r(t)∆x, for 0 ≤ t ≤ tf (17)

And:

r(t) = 10

(
t

tf

)3

− 15

(
t

tf

)4

+ 6

(
t

tf

)5

(18)

Where xi is the initial position, xf is the final position, both
are given in cartesian space, r(t) is the trajectory function
of two points, ∆x = xf − xi, and tf is the duration of the
movement. Using (17) and (18) the desired trajectory for a
Pick and Place Task is generated which is shown in Fig. 4. For
the DPR simulation, the system is submitted to two different
scenarios. For the first scenario, DPR executes the trajectory
shown in Fig. 4 without any load on the mobile platform. In
the second scenario DPR executes the same trajectory but a
load of 1 Kg is added at different intervals of the trajectory;
Fig. 5 shows the desired trajectory in 3D with the changes in
the mass used for scenario 2.

The proposed PD with BSNN compensation performance is
compared with a simple PD controller in order to evaluate the
improvement obtained when a compensation term is added. The
parameters for the controllers are summarized in Table 3. To
quantify the performance of the proposed PD controller with
BSNN compensation versus the simple PD controller the Root
Mean Square Error (RMSE) formula is used, which allows us to
know with better precision which of the proposed controllers
offers a better performance for tracking trajectory tasks. The
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TABLE III
CONTROLLERS PARAMETERS

PD/PD BSNN

KP = 1045
KD = 63
γ = 0.53
I1 = [−1.5 − 1.2 − 0.9 − 0.6]
I2 = [−0.9 − 0.6 − 0.3 0]
I3 = [−0.3 0 0.3 0.6]
I4 = [0.3 0.6 0.9 1.2]

RMSE for the Cartesian and joint space are given as follows
respectively:

RMSEC =

√√√√ 1

N

N∑
k=1

(e2x(k) + e2y(k) + e2z(k)) (19)

RMSEJ =

√√√√ 1

N

N∑
k=1

(e2q1(k) + e2q2(k) + e2q3(k) + e2q4(k))

(20)
where ex, ey, ez denote the Cartesian position tracking error of
the mobile platform along the x, y, z axes, while eq1, eq2, eq3
are the different joint space tracking errors. Moreover, N is
the number of samples and k the sample at a certain moment.
The RMSE results for scenarios 1 and 2 are depicted in
Tables IV and V respectively. According to the results, the
improvement of the proposed PD BSNN controller exceeds the
simple PD controller more than 70% for the first scenario when
the DPR woks without any payload; likewise for scenario 2,
the improvement of the PD BSNN controller is greater than
30% with respect to the PD controller. The control signals with
respect to time for both controllers and the behavior of the
BSNN compensation term with respect to time are illustrated
in Fig. 7 for scenario 1 and in Fig. 9 for scenario 2. As can
be noted in Fig. 6 and Fig. 8 the steady-state error for the PD
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Fig. 8. The first column corresponds to tracking error in Cartesian Space, and
the second one in Joint Space Scenario 2
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controller will never be zero; this is because the PD controller
can not compensate the gravity term of the manipulator, unless
the gravity vector is known and it can be include into the
controller, or add an integral action at the PD controller, unlike
the PD BSNN controller which, due to the neural network, tries
to estimate the DPR dynamic model and in this way cancels
the effects produced by gravity. PD BSNN controller alleviates
the steady-state error in 3 seconds for the first scenario and 5
seconds for the second scenario.

V. CONCLUSIONS AND FUTURE WORK

In this work we proposed a PD controller with intelligent
compensation based on the B-Spline neural network which
was applied in simulation to a DPR. An advantage of this



TABLE IV
CONTROLLERS PERFORMANCE EVALUATION SCENARIO 1

RMSEC Cartesian RMSEJ Articular
(cm) Improvement (Deg) Improvement

PD 0.0239 0 % 0.0614 0 %
PD BSNN 0.0067 71.81 % 0.0138 77.61 %

TABLE V
CONTROLLERS PERFORMANCE EVALUATION SCENARIO 2

RMSEC Cartesian RMSEJ Articular
(cm) Improvement (Deg) Improvement

PD 0.0343 0 % 0.0674 0 %
PD BSNN 0.0214 37.67 % 0.0450 33.16 %

controller is that it is not necessary to have knowledge about the
dynamic parameters of the system, only the range of possible
values that the error signal can acquire should be considered.
The results show the improvement of including the term of
intelligent compensation, since it considerably improved the
performance of the system under different requirements. For
future work it is intended to implement this controller in real-
time to a physical DPR and compare the performance obtained
with the BSNN with respect to a PD controller with Radial
Base Function Neural Network compensation.
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a b-spline neural network and chaotic immune approaches,” Mechanical
Systems and Signal Processing, vol. 23, no. 8, pp. 2418–2434, 2009.

[27] J. M. Ramirez and O. Ruben Tapia, “Neural network control of the
statcom in multimachine power systems,” WSEAS Transaction on Pow-
erSystems, vol. 2, pp. 1790–5060, 2007.

[28] W. Khalil and E. Dombre, Modeling, identification and control of robots.
Butterworth-Heinemann, 2004.

[29] G. S. Natal, A. Chemori, and F. Pierrot, “Dual-space control of extremely
fast parallel manipulators: payload changes and the 100g experiment,”
IEEE Transactions on Control Systems Technology, vol. 23, no. 4, pp.
1520–1535, 2015.


