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ABSTRACT 

In this paper, we consider the use of circular moments for invariant classification of images which have been blurred by 
motion. The test images used here have been acquired when the objects are vibrating at different frequencies. A 
comparative analysis using Zernike and Wavelet-Fourier moment sets is presented. An intensity normalization of the 
input images is done to homogenize them due to inhomogeneous illumination produced by the acquisition. The 
classification method is tested using images from objects which have intrinsically little differences between them. 
Experimental results show that, the proposed classification method based in Zernike and Wavelet-Fourier moments can 
be well addressed to grade images smeared by motion, from objects under high frequency vibrations. 
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1. INTRODUCTION 
The method of the image moments has a broad spectrum of applications such as in image reconstruction, computer 
vision, object classification, image analysis, invariant pattern recognition and so on. The first who proposed invariants 
based on geometric moments to describe an image was Hu [1]. Several years after, Teague used orthogonal polynomials 
to propose a new kind of moments called today, Zernike and Legendre moments [2]. Many authors have demonstrated 
that the moments of an image are useful features for pattern recognition and object classification [3-11]. In all these 
researches have been demonstrated that image moments based on different nature of polynomials can be efficiently 
combined in an algebraic way to define invariants to the orientation [12], scale [13], shift [14], blur [15-17], and the 
contrast changes [18] on the vision field of an image. Nowadays, the applications of moments has been increased and 
new polynomial sets have been proposed to generate invariants each time more efficient [19-22] including the n-
dimensional moment invariants [23]. On the other hand, in a shape recognition system a set of numerical features are 
extracted from an image. These features can be invariant to different multidistorsions as the blurring caused by the 
motion between the camera lens and the object. Some kinds of blurring caused by vibration, constant velocity, and 
parabolic motion have already been analyzed using geometric moments [16]. Also, invariants based on complex 
moments have been proposed to recognize images blurred by the symmetrical Point spread function method [15]. Our 
interest of this research is to implement the circular moments of images as descriptors into a classification method of two 
dimensional motion-blurred images. We compare the performance of two moment sets in the classification of objects 
which are morphologically very similar between them. Moreover, these test objects are vibrating in the vision field. The 
classification of the objects is also obtained using spatial illumination variations. The kinds of moments used here are 
based in B-Spline Wavelet functions [3] and Zernike [2]. Our experimental results show that, the classification of the 
moving objects is reached using both Zernike and Wavelet moments. The kind of test objects used here are screws with 
millimetric and standard threads. 

This paper is organized as follows: in section 2 is presented a general review of the moments of an image based in 
geometric and circular polynomials. This review includes a compensation method of illumination based on geometric 
moments to normalize the intensities in the input images. Section 3, shows the experiment and results of the 
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classification method using objects of two different classes. Finally in the section 4, the conclusions of work are 
presented. 

2. IMAGE MOMENTS: A THEORETICAL REVIEW 
2.1 Geometric moments 

The geometric moments rsm  of order r s+  of an image ( ),f x y  are defined as,  
 

( , )r s
rsm x y f x y dxdy

Ω

= ∫∫ ,     (1) 

where r,s 0,1,2,3,= K  and Ω  is the space region of pixels which is used to define the intensity function ( ),f x y . By 

definition, the moment of order zero 00m  represents the total intensity of the image and the point 
_ _

10 00 01 00( / , / ) ( , )m m m m x y=  is its intensity centroid. In the particular case of computing the area of a 8 bit binary image 

( ),Bf x y , the geometric moments can be used for this purpose by means of the relationship defined as 
00 255area m= . In 

general, the central moments rsµ  computed with respect to the intensity centroid of an image are defined as, 
 

( ) ( ) ( ),
r s

rs x x y y f x y dxdyµ
Ω

= − −∫∫ .     (2) 

The moments of the Eq. (2) are translation invariant respect to the position of the reference system.  
 
Particularly in the pattern recognition area, the objects of interest are frequently represented by a set of numerical 

features, and it is expected that; these features will be invariant to the changes in the scale, orientation, position, and 
illumination of objects in the vision field. All of these multidistorsions can be represented by the following 
transformations, 

 
( ) ( )D Rf x , y g f x, y′ ′ = ,        (3) 

0

0

xx cos sin x
k

y sin cos y y
θ θ
θ θ

′ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,    (4) 

where ( , )Rf x y  and ( ', ')Df x y  are respectively the reference and distorted images. The number g is an intensity contrast 

factor, θ  is an arbitrary rotation, ( )0 0x , y  is the shifting in x  and y  directions respectively, and k is a scaling factor. 
The Equation (4) defines the geometric transformations suffered by the pixels of the reference image, where the 
coordinates of the reference and distorted images are respectively ( , )x y  and ( ),x y′ ′ . According to Mukundan [24], the 

geometric moments pqm′  of a scaled image can be expressed in terms of the moments of the reference as, 
 

' 2p q
pq pqm k m+ += .     (5) 

In the particular case of a scale 1k = , pq pqm m′ = . Maitra [18] proposed a formula to compute the contrast factor using 
the central moments as follows,  

2 00

00

g k
µ
µ

=
′

.       (6) 

This factor is sensitive to intensity changes between the images ( , )Rf x y  and ( ', ')Df x y . 
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2.2 Circular Moments 

Bathia and Wolf [25] pointed out that, there exist an infinite number of complete sets of polynomials which are 
orthogonal inside the unit circle. These polynomial sets provide rotation invariant moments of a function. A general 
expression for the circular moments nlA of order n and repetition l for a distorted function ( , )Df r θ  in polar coordinates is 

( ) ( )
2

0 0
, ,

k

nl n nlA g f r k P r k r dr d
π

α θ θ θ∗= ⋅ ∫ ∫ ,   (7) 

where 

 ( , ) ( / , )Df r g f r kθ θ= ,     (8) 

and nα  is a normalization factor and the complex functions given by 

( )
( , )

( )
nl il

nl
n

R r
P r e

r
θθ

ψ
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 ,     (9) 

have radial polynomials nlR ( r )  or ( )n rψ  in r of degree n. The integers n ≥ 0 and 0, 1, 2, 3,...l = ± ± ± are respectively the 

radial and the harmonic orders. If the difference n l−  is an even number for l n≤ , the radial Zernike polynomials 

nlR ( r )  are used in Eq. (7). Otherwise, if no restriction exists for orders n  and l , then the polynomials ( )n rψ  are taken 

into account in the same Eq. (7). It has been used the notation ( )n rψ  to represent the wavelet radial functions. These 

functions ( )n rψ  are generated by binary dilations and dyadic translations of the basic wavelet function ( )rψ . This set 
is defined as follows,  

( ) ( )p 2 p 1
n r 2 2 r q2ψ ψ −= − ,      (10) 

where the integers p and q are in terms of n, following the relationship [26], 
p 1n 2 q p 2+= + + − ,      (11) 

for 0,1,..., .p t=  and 10,1,..., 2 pq += . If 1,..., 1n N= −  then 22 2tN t+= + − , with t a positive integer. In particular 
when 7N = ; n,  p , and q are taking the values  
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,     (12) 

where N  is the number of functions to be generated. In this work will be used the cubic B-Spline Wavelet function 
( )rψ  as basic wavelet [27]. It is defined by, 

( )
( )

( )( ) ( )
( )

2m 1

2

2r 14ar cos 2 w 2r 1 exp
2 n 12 m 1

ψ σ π
σπ

+ ⎛ ⎞−
= − −⎜ ⎟⎜ ⎟++ ⎝ ⎠

,     (13) 
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with the values m=3, a=0.697066, w=0.409177 and 0.561145σ = . The profiles for ( )n rψ  with 0,1, 2,...,16n = , 
using the Eqs. (11) and (13) are shown in the Figure 1. Their respective intensity maps are shown in the Table 1. It is 
easy to see in the same table that, the scaling of the function is done by the integer p and the radial shifting by the 
parameter q. Also, the complex wavelet functions ( ) il

n r e θψ  can be mapped as intensity distributions in real and 
imaginary parts as shown in the Table 2. Commonly, the circular moments are not shift, scale and intensity changes 
invariant in themselves, so that; the non orthogonal Geometric [18] and Fourier Mellin moments [10] are used to 
normalize them. In our case the geometric moments have been implemented for this task. 

 

 

 

 

 
Fig. 1. Profiles of the radial B-Spline cubic Wavelet functions ( )rnψ , using Eq. (11) to dilate and translate the function 
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Table 1. Wavelet radial intensity maps 

 
 

Table 2. Wavelet complex intensity maps 

 

Proc. of SPIE Vol. 6748  67481L-5



 

 

2.3 Standard deviation and Mean of the moments as classification criteria  

Many kinds of invariants have been proposed from several polynomial sets; as a consequence of this situation various 
criteria can be tested to classify objects from moments. It is however well known that, circular moments are rotation 
invariant and the average of a few of them from low orders can be used to define practicable measures to be 
implemented in practice. In this point, a simple criterion to measure the performance of the moment sets as the kind 
studied in the past subsection will be proposed. The objective is to obtain a classification method of objects with very 
little differences between them. The criterion is based in statistical metrics as the average and standard deviation of the 
modulus of the moments. It will be shown that, these metrics can be successfully implemented as invariant classifiers. In 
our experiment, the images of the objects have been multidistorsioned under hard movements as vibrations. These 
motions cause images blurred by the motion between the scenes and the camera lens. Specifically, the measures 
implemented on the modulus of nlA  are given by 

1 1

0 0log
nl

n l

A
mean

γ χ

γ χ

− −

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥=

⋅⎢ ⎥
⎢ ⎥⎣ ⎦

∑∑
,     (14) 

and  
21 1 1 1

2

0 0 0 0log
nl nl

n l n l
A A

deviation

γ χ γ χ

γ χ γ χ

− − − −

= = = =

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟= −
⎢ ⎥⋅ ⋅⎜ ⎟
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

∑∑ ∑∑ ,    (15) 

where γ  and χ  are respectively the maximum values computed for the radial and harmonic orders. During the 
classification of the objects is required to compare the number of moments µ  computed in the Eq. (7), for each 
polynomial set. This number depends of the kind of radial polynomials used. If the nlR ( r )  polynomials are used, thus; 
the number of moments is  

0
1

2

z

i

iγ

µ
=

⎧ ⎫⎢ ⎥= +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑ ,     (16) 

where the symbol β⎢ ⎥⎣ ⎦  is the integer part of β . On the other hand, if the ( )n rψ  is implemented the number µ  is 
computed using the expression, 

( )2
1ψµ γ= + .     (17) 

The radial orders in both cases are related by   
2Z ψγ γ= ,     (18) 

where the zγ  and ψγ  are the maximum values of the radial orders computed, respectively for nlR ( r )  and ( )n rψ . 
 

3. EXPERIMENT AND RESULTS 
The kind of objects used in this research correspond to mechanical parts, they are set on a mobile base to be digitized 
with an optical digital system. The arrangement consists of a ½ in. CCD B&W camera (1392×1040 px) with a video 
frame rate of 30 frames/s, a 35-75 mm zoom lens, an incoherent illumination system with a white light illuminator (10 to 
30 W), and a monochrome frame grabber with video up to 60 MHz of pixel rate and a pixel resolution up to 2048×2048. 
The vibration-blurred images used here are produced by changes in the oscillation frequency of a loudspeaker bellows 
that is used to vibrate the input objects. The control of the oscillation frequencies is done by the union of a signal 
generator along with an electronic amplifier connected to the loudspeaker. The interval of frequencies reached by the 
bellows is { }1,2,3, ,9K Hz. Some images of screws blurred by vibration are shown in the Figure 2, and the oscillating 
system is sketched in the Figure 3.  
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Figure 2. Images of screws smeared by vibration. Each frequency increases the blurring in the vertical direction of the image 
 
 
 
 
 
 
 

 
 

Figure 3. Sketch of a vibration system to produce blurring in the test images, it is composed by a loudspeaker bellows, an electronic signal amplifier, 
and a frequency generator 
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When the image acquisition of the objects is finished, their image moments are computed using the Eq. (7). The intensity 
normalization factor g  obtained via the relation (6) has been taken into account in the computation of the nlA . Now we 
are in position of using the Eqs. (14), to obtain the mean of the modulus of the moments. After computing the mean of 
the Zernike and Wavelet moments of the images, the obtained values are graphed as shown in the Fig. 4. As it can be 
seen in the graphs, there exist a distance between the values of the means for the two classes of objects studied. The 
classification criterion works as shown in the Figure 4, because it is evident that; in every case only the curves from the 
same class of screws are crossed.  
 

4. CONCLUSIONS 
We have computed circular moments on the basis sets of Zernike and Wavelet to classify motion-blurred images. An 
experimental setup has been implemented to acquired images blurred by vibration. The test objects have been acquired 
in oscillating motions at different frequencies. The classification method has been proven with test objects as screws 
which have very similar features between them. The object classification using circular moments is limited to a 
maximum frequency. In our experiment this maximum frequency is 7 Hz. The blurring in the images produced by the 
motion is controlled by a loudspeaker bellows. All the moment sets are averaged using the Eqs. (14), this expression is 
used as an invariant, it has been proposed as a classification criterion to grade images in classes. The first class 
corresponds to the millimetric thread and the second to the standard. The classification is reached when the values of the 
mean of the modulus of the moments are crossed between objects from the same class. And not works when these values 
from objects of different classes are mixed between them. In general the circular complex moments have been found 
well addressed to discriminate objects with high similarities. The experimental results shows that the proposed 
classification method based on Wavelet and Zernike moments have a good performance. 
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Figure 4. a) Classification of six screws in terms of their threads using the mean of a) Wavelet-Fourier, and b) Zernike moments. The curves in the 
above position in each graph correspond to the three millimetric screws and the curves below, belong to the three standards. The vertical lines indicate 

the limit frequency of classification. Both Wavelet and Zernike moments reach the classification until 7 Hz of frequency. 
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