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ABSTRACT

Multispectral imaging has given place to important applications related to classification and identification of
objects from a scene. Because of multispectral instruments can be used to estimate the reflectance of materials
in the scene, these techniques constitute fundamental tools for materials analysis and quality control. During
the last years, a variety of algorithms has been developed to work with multispectral data, whose main purpose
has been to perform the correct classification of the objects in the scene. The present study introduces a
brief review of some classical as well as a novel technique that have been used for such purposes. The use of
principal component analysis and K-means clustering techniques as important classification algorithms is here
discussed. Moreover, a recent method based on the min-W and max -M lattice auto-associative memories, that
was proposed for endmember determination in hyperspectral imagery, is introduced as a classification method.
Besides a discussion of their mathematical foundation, we emphasize their main characteristics and the results
achieved for two exemplar images conformed by objects similar in appearance, but spectrally different. The
classification results state that the first components computed from principal component analysis can be used to
highlight areas with different spectral characteristics. In addition, the use of lattice auto-associative memories
provides good results for materials classification even in the cases where some spectral similarities appears in
their spectral responses.

Keywords: autonomous techniques, image analysis, K-means, lattice associative memories, multispectral clas-
sification

1. INTRODUCTION

Multispectral imaging instruments have become an important tool for the analysis of objects in a scene due
to their capability to derive spectral information about materials. Although these instruments were first used
for Earth monitoring, during the last years they can be found as fundamental analysis tools in diverse ar-
eas. Current applications include: quality control,12,15 color reproduction,32 restoration of scripts in damaged
manuscripts,5,6, 17 analysis of art works,4,8 medicine,34 among others. Multispectral devices register multiple
images at different wavelength intervals from the ultraviolet, (UV), visible (VIS), or near infrared (NIR) ranges
of the electromagnetic spectrum. The information acquired at each spectral band provides more information
about materials than conventional cameras because the relative intensity of materials (spectral radiance) varies
with wavelength. Moreover, appropriate techniques can be used to derive the spectral reflectance of materials
comprising the scene under study.

During the last years, different algorithms have been proposed to perform the unsupervised classification of
multiespectral data. The aim of classification is to identify regions in the scene with similar spectral characteris-
tics. A commonly used method to quantify the spectral similarities between a reference spectrum and any other
spectral pixel in the image is the spectral angle mapper, (SAM). Although this intensive method has been used
for many applications,7,21 it requires that the reference spectra should be known in advance. Because of the pro-
cessing time required to analyze multiple images, analytical tools for dimensionality reduction, such as principal
component analysis (PCA) or partial least squares (PLS) have been commonly used.11,19 These algorithms have
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been used to maximize the spectral differences within the image. Other common approaches contemplate the use
of clustering techniques to group the data according to a predefined criterion; in this category we can mention
classical techniques such as, K-means and fuzzy-C means.2 Moreover, there exist a novel class of algorithms that
has emerged from the context of hyperspectral data to give solution to the problem of autonomous identification
of endmembers; in this context we can mention pixel purity index (PPI),3vertex component analysis (VCA),18 and
lattice associative memories.25 Although these algorithms have been proposed to work with higher dimensional
data, they can be properly modified to realize the classification of vectors with similar spectral curves.

The following manuscript provides a comparison of three autonomous techniques that are suitable for mate-
rials classification from multispectral imagery. We begin with a discussion of how principal component analysis
can be used to maximize the spectral differences along the scene. Later, the mathematical treatment of K-
means clustering and a technique for endmembers identification based on lattice associative memories, a novel
development in lattice algebra, is presented. This manuscript is organized as follows: Section 2 introduces the
mathematical basis of PCA and K-means clustering; Section 3 starts with a brief mathematical background on
lattice algebra and then introduces the concept of lattice associative memories for pattern recognition. This
Section concludes with a discussion of the use of both memories for image classification. Section 4 gives the clas-
sification results obtained by applying each technique to a pair of multispectral data sets. Concluding remarks
and direction of future work to the research material presented in this paper are given in Section 5.

2. AUTONOMOUS TECHNIQUES FOR IMAGE CLASSIFICATION

The increasing use of multispectral sensors, where multiple bands of the same scene should be analyzed, has made
necessary the development of improved techniques to work with the problem of classification of multidimensional
data. In the following lines we present the mathematical treatment of two approaches commonly used in the
literature, whose results have given solution to numerous problems.

2.1 Principal Component Analysis

The use of principal component analysis for image classification has been widely studied from different perspec-
tives. The technique determines orthogonal linear combinations from a set of characteristics (spectral bands)
that maximize the variance among them; this variations can be used to form a new set of images called com-
ponents. Although the technique has been mainly studied for dimensionality reduction, it also may be used to
combine components to form an enhanced image. Given an M ×N multispectral image conformed by n spectral
bands, we can represent the image as a set having k = MN spectral pixels; i.e. xξ in Rn for ξ = 1, . . . , k; from
this array we can compute the mean vector z and the covariance matrix C. Element cii of C is the variance of
xi, the ith component of the x vectors, while element cij is the covariance between elements xi and xj of these
vectors. This way, if elements xi and xj are uncorrelated, then cij = cji = 0.

Given that the n× n matrix C is real and symmetric, finding a set of n orthonormal eigenvectors always is
possible.11,20 Let ei and λi for i = 1, . . . , n be the eigenvectors and corresponding eigenvalues of C arranged
in decreasing order. Let A be a transformation matrix whose rows are formed by the eigenvectors of C ordered
decreasingly from their corresponding eigenvalue. Therefore, we define the Hotelling transform based on the
transformation matrix A that is used to map the x vectors into corresponding y vectors, according to the
expresion,

y = A(x− z). (1)

An important result from this transformation is that the covariance matrix computed from the y vectors is a
diagonal matrix whose off-diagonal elements are 0, in other words, the elements of the y vectors are uncorrelated.
Additionally, Eq. (1) establishes a new coordinate system whose origin is at the coordinates of z and whose axes
point in the direction of maximum variance; in the case of multispectral images, the corresponding principal
components obtained from the Hotelling transform have the characteristic that the highest contrast is contained
in the first two components (about 94% of the total variance).

Proc. of SPIE Vol. 8499  849920-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/04/2013 Terms of Use: http://spiedl.org/terms



2.2 K-means clustering

This classification algorithm is used to identify clusters from n-dimensional data points (also considered as
vectors). The mathematical treatment of the algorithm is briefly described as follows. Given a set of data
{x1, . . . ,xQ} consisting in Q observations from a random sample X ∈ Rn, the method searches to subdivide the
data set into K clusters. Particularly, a cluster is conformed by a set of data whose interdistances with points of
the same cluster are smaller than the distances with points outside the cluster. The pξ vectors, for ξ = 1, . . . ,K
represent the centers of such groups. Therefore, the purpose of the algorithm is to determine these vectors, as
well as to assign the data points to some cluster such that the sum of the square distance of each point to its
closer pξ vector be a minimum.2

Mathematically, for each point xq, with q = 1, . . . , Q, let dq,ξ ∈ {0, 1} be a set of binary variables indicating
which of the K clusters the point xq should be assigned, such that if the point is assigned to the ξ cluster, then
dq,ξ = 1 and dq,j = 0 for j ̸= ξ. The following objective function is defined such that

J =

Q∑
q=1

K∑
ξ=1

dq,ξ∥xq − pξ∥2, (2)

which represents the sum of the square distances between each point to its assigned pξ vector. Because this
function has the objective of finding values of dq,ξ and pξ that minimize J , the algorithm performs an iterative
process that involves two optimization stages at each iteration. First, initial values for pξ are chosen, then the
algorithm minimizes J with respect to dq,ξ with a fixed pξ. In the second step, the algorithm minimizes J with
respect to pξ maintaining dq,ξ fixed. This two optimization steps are repeated until convergence. At the end of
the procedure all the points are classified as members of some of the K clusters.

3. LATTICE ASSOCIATIVE MEMORIES FOR IMAGE CLASSIFICATION

The technique that will be presented in this section has emerged from hyperspectral image analysis, whose results
have shown to be an efficient method for the determination of constituent materials spectra,25,26,31 as well as an
important tool for pigments extraction.30 This section introduces the basic lattice concepts and mathematical
operations needed to understand the proposed classification method and the case study presented in Section 4.
The first subsection provides background related to lattice matrix algebra operations, while the second subsection
introduces lattice associative memories as the fundamental tool for the method here discussed.

3.1 Lattice matrix algebra

Lattice algebra based operations, in which the usual matrix operations of addition and multiplication are replaced
by corresponding lattice operations, have found increasing applications, such as pattern recognition,22 associative
memories in image processing,23,24,28 computational intelligence,9 industrial applications modeling and knowl-
edge representation,13 and hyperspectral image segmentation.10,25,26,29 In the following lines we introduce the
foundations of these operations.

The maximum or minimum of two numbers usually denoted as max(x, y) and min(x, y), will be written
as binary operators using the “join” and “meet” symbols employed in lattice theory,1 i.e., x ∨ y = max(x, y)
and x ∧ y = min(x, y). For example, the maximum of two matrices X,Y of the same size m × n is defined
as (X ∨ Y )ij = xij ∨ yij , for all i = 1, . . . ,m and j = 1, . . . , n. Inequalities between matrices are also verified
elementwise, e. g., X ≤ Y if and only if xij ≤ yij . Furthermore, the conjugate matrix X∗ is defined as −XT

where XT denotes usual matrix transposition, or equivalently, (X∗)ij = −xji, hence X ∨ Y = (X∗ ∧ Y ∗)∗. Two
important operations are the max-sum of appropriately sized matrices X,Y and the min-sum of X,Y defined,
respectively, for all i = 1, . . . ,m and j = 1, . . . , n, as follows:

(X ∨Y )ij =

p∨
k=1

(xik + ykj) and (X ∧Y )ij =

p∧
k=1

(xik + ykj) . (3)
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The relationship (X ∨Y )∗ = Y ∗∧X∗ holds for X,Y , and establishes the duality between both types of lattice
matrix sums. For p = 1 we have y∨xT = y∧xT , thus these lattice operations reduce to the outer sum of two
vectors x ∈ Rn and y ∈ Rm, defined by the m× n matrix

y ⊕ xT =

 y1 + x1 · · · y1 + xn

...
. . .

...
ym + x1 · · · ym + xn

 . (4)

3.2 Lattice associative memories

Lattice based operations have been applied for pattern recognition problems as the computational model for a
novel class of neural networks that are used as associative memories.22,24 Let (x1,y1), . . . , (xk,yk) be k vector

pairs with xξ = (xξ
1, . . . , x

ξ
n)

T ∈ Rn and yξ = (yξ1, . . . , y
ξ
m)T ∈ Rm for ξ = 1, . . . , k. Given a set of vector

associations {(xξ,yξ) : ξ ∈ k} we introduce a pair of associated matrices (X,Y ), where X = (x1, . . . ,xk) and
Y = (y1, . . . ,yk), with an association given by (xξ,yξ) for ξ ∈ k. Thus, X is of dimension n×k with i, jth entry
xj
i and Y is of dimension m × k with i, jth entry yji . Two m × n lattice associative memories able to store k

vectors such that, for ξ = 1, . . . , k, the memory recalls yξ when is presented the vector xξ are defined as follows.
The min-memory WXY and the max-memory MXY , both of size m× n, that store a set of associations (X,Y )
are given by the expressions

WXY =

k∧
ξ=1

[yξ ⊕ (−xξ)T ] ; wij =

k∧
ξ=1

(yξi − xξ
j) , (5)

MXY =
k∨

ξ=1

[yξ ⊕ (−xξ)T ] ; mij =
k∨

ξ=1

(yξi − xξ
j) . (6)

The left part of Eqs. (5) and (6) are in matrix form, while the expressions to the right correspond to the i, jth entry
of min-W and max -M memories, respectively. In this case the memories are named lattice hetero-associative
memories (LHAMs); we speak of a lattice auto-associative memory (LAAM) if X = Y ; hence, X ∨ X∗ =
(X∗)∗ ∨ X∗ = (X ∧ X∗)∗, then M = W ∗. Hence, the min- and max-memories are dual to each other in the
sense of matrix conjugation and mij = −wji.

3.3 Classification procedure from LAAMS

The classification method here discussed is based on the assumption that many of the spectral pixels registered
in a multispectral scene are conformed by spectral mixtures of the constituent materials spectra, at different
proportions, mathematically,

x =

K∑
i=1

ais
i + r = Sa+ r (7)

ai ≥ 0 ∀i and
K∑
i=1

ai = 1 , (8)

where x ∈ Rn is a spectral pixel acquired over n bands, S = {s1, . . . , sK} is a matrix whose columns are the
spectra of constituent materials (also known as endmembers), a=(a1, . . . , aK)T is a K-dimensional vector of
corresponding fractional abundances present in x and r is a noise vector.14 This model represents a minimum
convex set or simplex enclosing most of the spectral data, where the K pure pixels spectra are the vertices of
the corresponding simplex.

The matrix memories WXX and MXX, computed from a given set of vectors X = {x1, . . . ,xk} ∈ Rn, are
able to derive an n-dimensional simplex enclosing most if not all of the vectors in the given space. These points
will correspond to the vertices of the n-simplex and can be extracted from the columns of W and M . As it was
shown in,25,30 for multispectral and hyperspectral data sets these vertices represent the “purest” spectral pixels
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or constituent materials spectra that can be used for classification. In addition, given that the column values
of LAAMs are not directly related with the set of original data X (for example W usually has negative values
by definition), an additive scaling is required to relate the column values with X. Thus, two scaled matrices,
denoted respectively as W and M , are defined for all i = 1, . . . , n according to the following expressions,

w i = wi +

k∨
ξ=1

xξ
i ; m i = mi +

k∧
ξ=1

xξ
i , (9)

where u = ∨k
ξ=1x

ξ and v = ∧k
ξ=1x

ξ denotes, respectively, the maximum and minimum vector bounds of X, and

whose entries are defined for all i = 1, . . . , n. Once the columns of W and M have been scaled, a fundamental
result from this method is that the set of points M ∪ W ∪ {u,v}, forms a convex polytope B with 2(n + 1)
vertices that contains X. For classification purposes, a subset C of {W ∪ u ∪M ∪ v} should be considered. As
a first approximation it is possible to select a number of

√
n columns to classify the data. In practice, however,

the election of this subset will depend on the number of materials to be classified. In order to determine which
columns should be consider for classification, an election based on the matrix of correlation coefficients provides
the most representative spectral vectors in the image. Finally, once the subset C has been determined, it is possible
to estimate the fractional abundances of each constituent material for all the vectors in the n-dimensional data.

The estimation of fractional abundances, known as spectral unmixing, can be performed through the inversion
of Eq. (7) subject to the imposed restrictions specified by Eq. (8). In the unconstrained case, a simple solution
can be obtained through the least square estimation method, expressed by,

a = S+x = (STS)−1STx, (10)

where S+ denotes the Moore-Penrose pseudoinverse matrix. However, for practical applications requiring that
the a coefficients satisfy the non-negativity condition, relaxing the full additivity, the non negative least square
numerical method (NNLS)16 may be used as a good approximation. Finally, the spectral classification can be
performed according to the computed fractional abundances.

4. SIMULATION RESULTS

The previously introduced techniques have been evaluated using two multispectral data sets registered by the
CAVE Project,33 which are available for research purposes. The scenes were captured using a CIE standard
illuminant D65, a cooled CCD camera, and VariSpec liquid crystal tunable filters. Each image has a spatial
resolution of 512 × 512 pixels, covering a spectral range from 400 nm to 700 nm at steps of 10 nm, and whose
pixel values correspond to reflectance quantities. The data sets employed for our simulations are subimages of
size 399× 187 pixels that are conformed by two peppers similar in appearance, but one being real and the other
being fake. Figures 1 and 2 present both subimages and the corresponding spectral curves obtained from each
one of the peppers to highlight their spectral differences. It is clear that the spectral curves show significant
differences for each case.

4.1 Application examples

Red peppers image

According to the authors the red pepper that appears in the upper part of the image is a real one, while the
other is fake. Also, including the background and the bright parts spectra, the number of classes for the clustering
process was set to four. Principal component analysis was first performed according to Eq. (1) computed from
the 31 spectral bands of the image. From the total number of components produced by the transformation, we
selected the first three components (C1, C2, C3) to produce a false color image; specifically, C1, C2, and C3 were
used as the R, G, and B channels to produce a color image. Table 1, first row, displays the largest eigenvalues
corresponding to components 1 to 9. On the other hand, the K-means clustering was realized according to the
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Figure 1. From left to right: first exemplar image conformed by two red peppers similar in appearance; corresponding
spectral reflectance curves obtained from pixels [105,86] and [302,106], respectively.

Figure 2. From left to right: second exemplar image conformed by two yellow peppers similar in appearance; corresponding
spectral reflectance curves obtained from pixels [96,68] and [338,117], respectively.

Euclidian distance and the clustering process was repeated six times. Columns 2 and 3 of Figure 3 show the
classification results obtained with both methods.

The use of LAAMs for multispectral image classification was realized as follows. BeingX the matrix conformed
by all the spectral vectors in the image, such that X = (x1, . . . ,xk) ∈ R31, with k = 74613, we computed WXX

and MXX by means of Eqs. (5) and (6), respectively. The resulting scaled memories W and M , both of size
31 × 31, were used to choose a reduced set of column vectors. As it was stated in,25,26 contiguous columns
are highly correlated being necessary to use some techniques to select a subset of them. A practical solution
consisting of a matrix of linear correlation coefficients computed from each scaled memory, followed by a threshold
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Table 1. Eigenvalues λi, for i = 1, . . . , 9, computed with principal component analysis for both subimages.

IMAGE λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

Red peppers 12541 1549 192 54 32 6 5 3 1
Yellow peppers 17371 384 31 12 7 2 2 1 1

process produces a subset of spectral vectors with low correlation coefficients.26 For this exemplar image, from
the 62 column vectors derived from W ∪M a final selection of uncorrelated columns from a threshold value of 0.3
provided a reduced set containing 4 spectral vectors; thus, C = {w3,w14,w15,m17}. Therefore, these column
vectors conformed the columns of the S matrix in Eq.(7) and fractional abundances were estimated with the
NNLS numerical method. Fourth column of Figure 3 shows the distribution of these spectral vectors along the
image.

Figure 3. 1st column: color RGB image; 2nd column: false color image produced by the first components of PCA; 3rd
column: classification produced by K-means clustering; 4th column: distribution of spectrally different classes obtained
with the LAAMs method.

Yellow peppers image

For this exemplar image the upper pepper is real, while the lower one is fake. Hence, any of the previously
discussed techniques should be able to classify these objects as members of two different classes. Firts, principal
component analysis was applied to the 31 spectral bands of the image. From the total number of components
the first three components were combined to produce a false color image. Table 1 presents the largest eigenvalues
corresponding to components 1 to 9. Also, for the K-means clustering the number of classes to subdivide the
image was set to four. The use of the Euclidian distance as distance metric and repeating the clustering 6 times
produced the results shown in the third column of Figure 4.

The method based on LAAMs was applied to the data set X, conformed by all the spectral vectors in the
image. From this set we computed WXX and MXX and their corresponding scaled versions W and M . In order
to select a reduced number of uncorrelated columns, a matrix of linear correlation coefficients was computed
from each scaled memory. By selecting the column vectors with correlation coefficients less than 0.39 produced a
reduced set containing 4 spectral vectors; thus, C = {w8,m4,m7,m17}. The NNLS numerical method provided
the fractional abundances for each one of these spectra at each pixel of the image. Figure 4, fourth column,
displays the distribution of these spectral vectors along the image.
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Figure 4. 1st column: color RGB image; 2nd column: false color image produced by the first components of PCA; 3rd
column: classification produced by K-means clustering; 4th column: distribution of spectrally different classes obtained
with the LAAMs method.

4.2 Comparison of results

According to the classification results shown in Figures 3 and 4, we can state that the LAAMs method and PCA
produced the best results. For the first exemplar image, lattice auto-associative memories approximated the
spectral curves of both real and fake peppers, which were used to classify the areas with similar spectra along
the image; the pseudo color image corresponding to the forth column of Figure 3 allows a clear differentiation
among the classes. Also, the false color image produced by the first components of PCA emphasizes the areas
with different spectral reflectance. On the other hand, K-means clustering is able to classify correctly the spectra
belonging to background and the bright areas; however, it classifies both peppers as members of the same class,
which is not true. For the second exemplar image, both techniques PCA and the LAAMs method are able to
differentiate between both peppers. This last, however, does not classify completely the upper pepper. The
results obtained by K-means clustering are similar to the previous case. Therefore, the fact that the spectral
curves of real and fake peppers present some similarities causes that the distances computed with K-means do
not present large differences to discriminate between the two objects.

5. CONCLUSIONS

In this manuscript we have presented a review of three methods that can be used for materials classification
from multispectral data. Beginning with the mathematical treatment of two well known methods, such as
principal component analysis and K-means, we also have discussed the application of a novel technique, based
on lattice auto-associative memories, for multispectral image classification. This technique is able to determine a
minimum convex set enclosing most of the spectral data X by computing two lattice matrix memories, W and M ,
respectively. Also, the points defining the convex set correspond to the “purest” spectral pixels or, alternatively,
the spectra of materials conforming the scene. Hence, a reduced set of uncorrelated columns obtained from W or
M can be employed for the spectral unmixing procedure. The application examples selected for our simulations
present additional complexity because the objects are similar in appearance, but with some differences in their
spectral curves. According to the classification results, the first three components computed from principal
component analysis can be used to highlight areas with different spectral characteristics. Moreover, the use of W
and M has provided good results for materials classification even in those cases with similar spectral curves. On
the other hand, the classification produced byK-means clustering did not give good results because of similarities
in the spectral curves of real and fake peppers, which causes that the distances computed by the algorithm are not
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large enough to discriminate between them. In fact, for applications related to quality monitoring or materials
classification, PCA and LAAMs are suitable techniques.
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