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ABSTRACT

In this work, the analysis of an optical - digital system based on the Fourier transform hologram architecture
is presented. We are interested in the diffractive effects in the Spatial Light Modulators as the sampling in
the Fourier plane and the diffraction produced by squircle-geometry apertures of pixels. Also, a mathematical
analysis is done in terms of the fringes visibility of the filters. Simulations and experimental results of the method
are shown.
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1. INTRODUCTION

Nowadays, the implementation of some holographic systems require from a spatial light modulator (SLM).
Typically these kinds of systems have had two drawbacks; the first is the pixel geometry because the corners
are approximately rectangular. It is a common task for LCDs to work with pixels with blunt corners.1 The
second disadvantage of the SLMs can be found when they are used as a diffractive optical device and coherent
illumination. Many replicas of the diffraction patterns in both Fraunhoffer and Fresnel planes are presented
from apertures digitally written in the SLM. This last fact is due to the inherent grid presented in the SLM.
These drawbacks limit the contrast and diffraction efficiency of the optical holographic filters. In this work
we mathematically review some of these effects using the Sampling theorem and the squircle function. Also,
we propose expressions for the intensity distributions and visibilities of the fringes presented in the Fourier
holographic filters. These last expressions have been computed taking into account the kind of apertures displayed
in the SLM to produce the reference beam. Specifically, the point source in a SLM must be approximated from a
rectangular pixel or a extended circle of a few pixels. This paper is organized as follows: in the second section is
presented a theoretical review of the Sampling theorem for SLMs and the expression of the Fraunhoffer diffraction
patterns of squircle apertures.2 Also in the same section, some visibility relationships for Fourier-like holographic
filters are computed by the cases of two kinds of reference sources, namely, rectangular pixel and extended circle.
In section 3, some simulation of the diffractive effects are shown. Finally in the section 4, the conclusions of the
work are presented.

2. A THEORETICAL REVIEW

This section mathematically describes the sampling and diffractive effects that produce a spatial light modulator
from its inherent grid structure.

Further author information: Send correspondence to E-mail: alfonso.padilla@upt.edu.mx, Telephone: 55 775 755 8301

Optics and Photonics for Information Processing VI, edited by Abdul A. S. Awwal, Khan M. Iftekharuddin,
Proc. of SPIE Vol. 8498, 849809 · © 2012 SPIE · CCC code: 0277-786/12/$18 · doi: 10.1117/12.930202

Proc. of SPIE Vol. 8498  849809-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/07/2015 Terms of Use: http://spiedl.org/terms



_ _,

JAALVglii

k.S

Figure 1. Sketch of the Input plane in a 2f coherent optical information processor. The grids in x and y directions
represents the pixels of a SLM

2.1 Sampling theorem in a Spatial Light Modulator

Let f1(x, y) and f2(x, y) be two functions which are digitally written in a SLM. These functions are called,
respectively, as object and reference

f (x, y) = f1(x+ d, y) + f2(x− d, y). (1)

Also the transmittance function of a SLM is given by

g (x, y) =
[
rect

(x
a

)
rect

(y
b

)]
∗

[
M∑
m

δ (x−ml)
N∑
n

δ (y − nl)

]
, (2)

where ∗ represents convolution. In this case, the pixel structure is represented by the rectangular functions along
the x and y axis. So that, the general transmittance function is given by the product

t (x, y) = f (x, y) g (x, y) . (3)

A sketch of two functions digitally written in a SLM is shown in the Figure 1.

If the SLM is normally illuminated by an incident plane-wave field of amplitude A into an Fourier experimental
setup, then the Fraunhoffer diffraction pattern can be obtained by the Fourier Transform T = F {t} of the
transmittance function t as follows

F {t (x, y)} = F {f (x, y) g (x, y)} , (4)

and by means the convolution theorem, the last expression becomes

F {t (x, y)} = F {f (x, y)} ∗ F {g (x, y)} . (5)

Replacing Eq. (1) into Eq. (5) and developing terms
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F {t (x, y)} = F {f1(x+ d, y) + f2(x− d, y)} ∗ F
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and appliying the Fourier transform convolution theorem

F {t (x, y)} = [F {f1(x+ d, y)}+ F {f2(x− d, y)}] ∗

[
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Therefore, the Fourier transform of the function to be displayed into the SLM

T (u, v) = ab
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Computing the intensity distribution from Fourier Transform by means I(u, v) = |T (u, v)|2, as follows
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This last expression represents MxN replicas of the Fraunhoffer diffraction patterns in the Fourier plane of the
transmittance function which is written in the SLM.

2.2 Diffraction patterns of a squircle function

Fernandez Guasti et al,2 introduce the analytical expression for the Fourier transform of the combination between
the aperture of a circle and a rectangle, it now is called as squircle function. Its Fraunhoffer diffraction pattern
can be computed by

G (ρ, φ) =2

3π
4∫

−π
4

Ms (θ) sen [Ms (θ) ρk cos (θ − φ)]

ρ cos (θ − φ)
dθ+2

3π
4∫

−π
4

cos [Ms (θ) ρk cos (θ − φ)]− 1

ρ2 cos2 (θ − φ)
dθ. (12)
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Ms (θ) =

2

{
1−

[
1− s2sen2 (2θ)

]1/2}
s2sen2 (2θ)


1/2

. (13)

this function is bounded such as 1 ≤Ms (θ) ≤
√

2.

2.3 Visibility of a holographic filter

In this part we are interested in computing expressions for the visibility of the Fourier holographic filters. The
distribution intensity of the filter depends from the aperture shapes of the object and reference. Particularly,
when the filter have been recorded using different geometries for the reference apertures.

2.3.1 Case I. Rectangular aperture and point source

We assume a transmittance function composed by a rectangular aperture of width 2a along with a point source
represented by kδ(x−d); both are placed in the input plane, respectively, in the cartesian positions of d and −d,
and if the transmittance function is normally illuminated by an incident plane wave field, then the Fraunhoffer
pattern distribution intensity is given by

I(u, v) = k2 + 4a2sin c2
(

2πau

f

)
+ 2aksin c

(
2πau

f

)
cos

(
2π(2d)u

λf

)
, (14)

where λ and f are respectively the wavelength of the beam and the focal length of the lens used in the optical
information processor. The visibility is as follows

V (u, v) =
2
∣∣∣aksinc( 2πau

λf

)∣∣∣ |k|
4a2sinc2

(
2πau
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)
+ k2

. (15)

2.3.2 Case II. Extended aperture and circular extended source

As a second example we assume a transmittance function composed by an arbitrary aperture g(x, y) and a
circular extended source of radius a, both are place respectively in the cartesian positions of d and −d. Then
the intensity distribution can be computed by

I(u, v, a, ρ) = |G(u, v)|2 +
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1
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λf

)
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)
, (16)

where G(u, v) = F [g(x, y)] and the visibility is expressed by
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2

. (17)

3. SIMULATION AND EXPERIMENTAL SETUP

As we mentioned before, two kinds of problems are presented when a SLM is used as transmittance function into
an optical coherent processor, which is used as Fourier holographic system. The first problem are the replicas
presented in the Fourier plane of the system of the Fraunhoffer diffraction pattern of the transmittance function,
and the second inconvenient are the diffractive effects due to the pixels with blunt corners. An experimental
example of the replicas is shown in the Figure 2 where is presented the intensity retrieval of an object and its
conjugate from a holographic filter. In the Figure 3, a simulation of different squircles are shown along with their
respective diffraction patterns. A sketch of the experimental setup is shown in the Figure 4,
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Figure 2. Replicas of the Fraunhoffer diffraction patterns from an holographic filter previously displayed in a SLM, which
is illuminated with coherent light
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Figure 3. Fraunhoffer Diffraction patterns of pixels with blunt corners described by the squircle function

Figure 4. Sketch of the experimental setup to obtain the Fourier transform using a SLM as transmittance function with
blunt pixels
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Figure 5. Object and its conjugate displayed using the Gamma correction operation

4. CONCLUSIONS

We have presented a mathematical review of some diffractive effects of SLMs, when they are used as transmittance
functions into optical coherent information processors. Particularly, in the case of using them for recording of
in-line holographic filters. According with the computation of the visibility expression for the holographic filters,
they can be affected by the geometry shape of the reference source, which is commonly used to generate the
reference beam. The shape of the reference source in a Fourier holographic system which is implemented in a SLM
can be diversified in concordance with the number of pixels taken into account. As well as the pixel structure
and the corner effects. In the pixel simulation presented here, a structure that is a combination between a circle
and rectangle can generate different Fraunhoffer diffraction patterns and consequently of this, it can change the
intensity distribution of the holographic filter. The main conclusion of this work is that, the diffractive and
sampling effects produce different intensity distributions in holographic filters, affecting the contrast or visibility
and the diffraction efficiency of the filters.
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