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ABSTRACT

This research introduces an automatic technique designed for the digital restoration of the damaged parts in
historical documents. For this purpose an imaging spectrometer is used to acquire a set of images in the
wavelength interval from 400 to 1000 nm. Assuming the presence of linearly mixed spectral pixels registered
from the multispectral image, our technique uses two lattice autoassociative memories to extract the set of pure
pigments conforming a given document. Through an spectral unmixing analysis, our method produces fractional
abundance maps indicating the distributions of each pigment in the scene. These maps are then used to locate
cracks and holes in the document under study. The restoration process is performed by the application of a
region filling algorithm, based on morphological dilation, followed by a color interpolation to restore the original
appearance of the filled areas. This procedure has been successfully applied to the analysis and restoration of
three multispectral data sets: two corresponding to artificially superimposed scripts and a real data acquired
from a Mexican pre-Hispanic codex, whose restoration results are presented.
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1. INTRODUCTION

The innovation of remote sensing systems has extended the range of application of imaging spectroscopy to
many different fields, including astrophysics, medicine, and military research, as well as food industry. Recently,
such systems have shown a great potential for the analysis and restoration of cultural heritage.1 Imaging
spectrometers, also known as hyperspectral sensors, are capable to register hundreds of images of the same
area, from visible to near infrared (VIS-NIR) wavelength intervals of the electromagnetic spectrum. The data
collected by such sensors contain the spectral information of the materials comprising the scene, which can be
used for further identification of any component. Compared to other technologies, such as RGB color cameras,
hyperspectral systems represent non-invasive techniques, suitable for the restoration of ancient documents and
artworks because they provide additional information that is not visible to the naked eye. Because many of
the existing ancient documents are damaged by the pass of time, hyperspectral imaging together with digital
image processing serve for two main purposes. First, they can be used as a guide for the actual restoration of
the document. Second, they can be employed as a tool to produce a virtually restored version of the document
under study.2

During the last years, different techniques based on multi- and hyperspectral imaging have been used for the
identification of pigments and inks in artworks, as well as the enhancement of illegible scripts in palimpsests.3 For
example, multispectral imaging was employed for the examination of the painting Holy Trinity Predella;4 21 images
were acquired in the VIS and NIR portions. Ware et al. performed the characterization of pigments with similar
coloration and different chemical composition in Maya murals found at the Naj Tunich cave in Guatemala.5 By
collecting 13 spectral images at wavelengths from 400 to 1000 nm, in increments of 50 nm, the authors could
differentiate between the original pigments and over-paintings. Furthermore, multispectral imaging techniques
have successfully revealed the erased or occluded text in palimpsests.1 Particularly the acquisition of 12 images
from 385 to 880 nm, in combination with digital image processing algorithms, let to the retrieval of most of
the original text in the Archimedes palimpsest.6 Similarly, a hyperspectral imager system used to enhance the
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contrast between the under and overwritten texts in the Patmos palimpsest has been proposed in Ref. [1]. For a
survey of past and current applications of spectral imaging techniques in the restoration of artworks, the reader
may consult Ref. [3].

On the other hand, once a set of spectral images has been collected from a document under study, two main
steps are required to perform the digital restoration of the manuscript: 1) the analysis of the pigments to locate
their spatial distribution along the image and 2) the digital restoration of the damaged areas. The first step can
be realized based on spectral unmixing analysis, assuming that the spectral information in the recorded image is
represented by mixtures of the constituent materials spectra;7 thus, the goal in the analysis is to identify those
pure pixels that best separate the spectral mixtures. For the autonomous identification of pure spectral pixels
in hyperspectral imagery, different techniques can be employed as those described in Ref. [8]. Moreover, the
digital restoration process contemplates the use of tools for cracks and holes removal. An algorithm for crack
removal is usually a two-step procedure: first the cracks must be detected and then the selected areas must be
filled in.9 The automatic identification of cracks can be realized by the use of morphological filtering, such as the
top-hat transformation;2 cracks and holes removal can be realized by the application of a region filling algorithm.
Another important step in the restoration process is the application of color interpolation algorithms to restore
the original appearance of the filled areas. Therefore, digital image processing has a wide range of opportunities
and challenges for virtual restoration of historical documents and artworks.10

This paper introduces an autonomous technique to perform the virtual restoration of the damaged areas in
historical documents. For this purpose, the technique is divided into three main steps: (1) multispectral image
acquisition of the document, (2) identification of constituent materials spectra (pure pigments) that best separate
the spectral mixtures, and (3) the virtual restoration of the damaged parts in the image. The organization of
this document is as follows. Section II introduces the mathematical preliminaries required to understand the
concept of lattice autoassociative memories. Section III states the problem of determining a set of constituent
materials spectra from multispectral data and presents the algorithm used to solve this task. In Section IV we
describe the algorithms that we use for virtual restoration of the document, including cracks and holes removal,
as well as color interpolation. Section V describes the spectral imaging systems used to collect the data used
in our experiments; this section ends with experimental results obtained when our technique is applied to some
multispectral data. Finally, Section VI states our conclusions and directions of future work.

2. MATHEMATICAL PRELIMINARIES

2.1 Lattice based operations

Lattice algebra operations have given place to new applications in pattern recognition problems, image processing,
as well as the development of a novel class of neural networks named as lattice associative memories, also known
as morphological associative memories.11,12 From the point of view of computational intelligence, an associative
memory is a device able to store k vector pairs (xξ, yξ), with the property that the memory recalls each xξ when
its corresponding associated vector yξ is presented as an input. Lattice associative memories are the cornerstone
of our technique since they are able to extract the set of pure pigments conforming a given historical document. In
order to understand their mathematical definitions, in the next lines we describe some lattice algebra operations
based on the algebraic structure (R±∞,∨,∧,+), with underlying set the extended real numbers together with
the binary operations of taking the maximum, minimum, or adding two elements of R±∞.

Taking the maximum or minimum of two numbers x, y, generally denoted as max(x, y) and min(x, y), will be
rewritten as binary operators, such that, x∨y = max(x, y) and x∧y = min(x, y). In particular, given two m×n
matrices X,Y , the maximum is defined as (X∨Y )ij = xij∨yij , for all i = 1, . . . ,m and j = 1, . . . , n. Inequalities
between matrices are also verified elementwise, e. g., X ≤ Y if and only if xij ≤ yij . Furthermore, the conjugate
matrix X∗ is defined as −XT where XT denotes usual matrix transposition, or equivalently, (X∗)ij = −xji,
hence X ∨Y = (X∗∧Y ∗)∗. In lattice matrix algebra, the usual matrix operations of addition and multiplication
are replaced by corresponding lattice operations, providing a faster computation. For a more complete treatment
of applied lattice algebra the reader may consult Ref. [12–14].
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2.2 Lattice associative memories

Let xξ = (xξ
1, . . . , x

ξ
n)

T ∈ Rn and yξ = (yξ1, . . . , y
ξ
m)T ∈ Rm for ξ = 1, . . . , k, be input and output vector sets,

respectively. Given a set of k vectors associations, such that (x1,y1), . . . , (xk,yk), we introduce a set of associated
matrices (X,Y ), where X = (x1, . . . ,xk) and Y = (y1, . . . ,yk), with an association expressed by (xξ,yξ) for
ξ ∈ k. Two m × n lattice associative memories (LAMs) able to store the set of vector associations (X,Y ) are
defined as the min-memory WXY and the max-memory MXY, whose entries are computed for i, j = 1, . . . , n by,

(WXY)ij = wij =
k∧

ξ=1

(yξi − xξ
j), ; (MXY)ij = mij =

k∨
ξ=1

(yξi − xξ
j). (1)

Notice from the above equations that the size of WXY and MXY depends on space dimensionality but not on
the number of vectors stored in X. Moreover, if the input and output sets are equal, i.e., X = Y , we speak of a
lattice autoassociative memory (LAAM), otherwise we have a lattice heteroassociative memory (LHAM).11,12 We
emphasize that the set conformed by the column vectors of the autoassociative memories WXX and MXX can be
used to determine the set of constituent materials spectra conforming a multispectral image.

3. AUTONOMOUS IDENTIFICATION OF PURE PIGMENTS

In order to perform the virtual restoration of a historical document, the identification of pure pigments spectra
from the multispectral image is of crucial importance since such spectra can be used to compute maps of the
distribution of each pigment along the scene. These maps can serve for two main purposes: 1) to determine the
absence or presence of pigments in areas that are not visible to the naked eye and 2) to locate cracks and holes
that are suitable for digital restoration. In the next few lines we state the approach used for the identification
of pure pigments from multidimensional data.

3.1 Spectral mixtures

Many of the existing historical documents are conformed by mixtures of various pigments and inks. Hence,
when a multispectral image is registered from them, the spectral pixels in the image will probably contain the
spectral mixtures of such pigments. Therefore, we can assume that a single multispectral pixel has registered
the combined spectral information of the constituent materials in the scene; in mathematical terms a single pixel
can be modeled as a linear combination of such spectra, following the constrained linear mixing model (CLMM),
expressed by,

x =
k∑

i=1

ais
i + n = Sa+ n (2)

ai ≥ 0 ∀i and

k∑
i=1

ai = 1 , (3)

where x is the n-dimensional spectrum of a multispectral pixel, S = (s1, s2, . . . , sk) is an n × k matrix whose
columns are the k purest spectral pixels that are also associated with constituent materials, a = (a1, a2, . . . , ak)

T

is a k-dimensional column vector whose entries are the corresponding fractional abundances or, equivalently, the
percentages of purest spectra present in x, and n is an additive noise vector.7

The aim of the CLMM is to estimate the fractions of pure pigments present in a single pixel, assuming
that we know their spectral signatures. The min- and max- lattice autoassociative memories provide special
properties that can be used to identify sets of pure spectral pixels from a multispectral image,15 as can be seen
in the following subsection. Furthermore, the estimation of fractional abundances can be performed through the
inversion of Eq. (2) subject to the imposed restrictions specified by Eq. (3). This process, known as spectral
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unmixing, allows to quantify the proportion of each pure pigment in every image pixels. A simple solution is
provided, making n = 0, by the least square estimation method expressed by,

a = (STS)−1STx. (4)

This estimation exists when S is of full rank. The abundances that result from this estimation do not necessarily
satisfy the constraints imposed in Eq.(3). Full additivity can be satisfied using the method of Lagrange Multi-
pliers, while the non-negativity condition can be enforced by applying the non-negative least squares numerical
method .16 However, satisfying both constraints simultaneously is not an easy task.

3.2 Determination of pure pigments using lattice associative memories

For a given multispectral image X ∈ Rn, conformed by k spectral vectors of dimension n, i.e. X = (x1, . . . ,xk) ∈
Rn, a fundamental result regarding the computation of the WXX and MXX matrices is that a subset of their
column vectors can be used as a selection of pure pixels related to the given image X. Furthermore, since the
relationship of lattice memories with the set of original dataX is not direct, for exampleWXX has negative entries,
an additive scaling of both memories is required. For this purpose two scaled matrices, denoted respectively as
W and M , are defined for all i = 1, . . . , n by the following expressions,

w i = ui +wi ; ui =

k∨
ξ=1

xξ
i , (5)

m i = vi +mi ; vi =
k∧

ξ=1

xξ
i . (6)

where u = ∨k
ξ=1x

ξ and v = ∧k
ξ=1x

ξ denotes, respectively, the maximum and minimum vector bounds of X, and

whose entries are defined for all i = 1, . . . , n. According to Eq. (1), the size of both WXX and MXX is n × n,
where n corresponds to the dimensionality of the input data.

In order to perform the spectral unmixing process, it is necessary to select a subset C of representative
columns from the set {W ∪M}, such that S = C in Eq. (2). This selection is mandatory for the two following
reasons. First, contiguous columns of W (independently M) are highly correlated forming ⌊

√
n+ 1⌋ groups,

each one ⌊
√
n+ 1⌋ vectors. Second, the number of columns in the S matrix must be much less than n. In fact,

the selection of the number of vectors in C should be in accordance with the number of materials to be unmixed
in the image. For this purpose, the columns of W ∪ M can be group into a finite number of classes using the
k-means clustering. As it was shown in Ref. [15] the centroids of this clustering process can be effectively used
as the columns of S, providing a good estimation for a.

4. TOOLS FOR VIRTUAL RESTORATION OF HISTORICAL DOCUMENTS

As we stated before, many historical documents show damages, such as cracks and holes, caused by inadequate
environmental conditions and handling through the passage of time. In order to have a better understanding
about the original appearance of a given historical document, the development of algorithms oriented toward
its digital restoration becomes necessary. This section introduces the algorithm we are applying for cracks and
holes removal, which is based on mathematical morphology. Once the algorithm has filled in the damaged areas,
the next step consists of restoring their original color by application of an interpolation algorithm.

4.1 Cracks and holes removal

From the perspective of digital image restoration, a hole may be defined as a background region surrounded by
a connected border of foreground pixels. Hence, the aim of a digital restoration would then be to remove such
holes in the image. In this paper, the restoration process is conducted by means of a morphological algorithm,
known as region filling ; this algorithm is based on set operations together with morphological dilations. In order
to clarify how our region filling algorithm works, we first introduce the basic morphological operations.
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The basic operations of erosion and dilation works with small shapes known as structuring elements in order
to shrink or grow objects in a given image. Given an image A and a structuring element B, both binary sets,
erosion and dilation are defined, respectively, by either the left and right parts of the following expression,

A⊖B = {z|(B)z ⊆ A} ; A⊕B = {z|[(B̂)z] ∩A ̸= ∅}. (7)

where z denotes the locations in A and B̂ denotes the reflected structuring element. Notice that the erosion of
A by B refers to the set consisting of all locations z such that B, translated by z, is contained in A. Similarly,
the dilation of A by B̂ is the set of all displacements, z, such that B̂ overlaps at least some portion of A.9

On the other hand, the region filling algorithm is described as follows. Let A denote a binary image with a
region whose elements are 8-connected, enclosing a hole. Since the objective is to fill the hole region with 1’s,
the algorithm starts by taking a point p inside the boundary to form an initial set X0; a value of 1 is assigned
to p, being 0 all the remaining elements. The set will be iteratively dilated until no more dilations be necessary.
The corresponding algorithm is computed as,

Xq = (Xq−1 ⊕B) ∩Ac q = 1, 2, 3, ... , (8)

where B is the symmetric structuring element and Ac is the complement of A. The algorithm is repeated until
Xq = Xq−1 for iteration q. At the end of the algorithm, the set Xq ∪A contains the filled hole and its boundary.
Notice in the above expression that the intersection of (Xq−1⊕B) at each step with Ac limits the result to inside
the region of interest. Once we have obtained the filled holes with this procedure, it is possible to know their
corresponding pixel positions in the original image; this positions will then be used for an interpolation process.
We turn now to the description of the color interpolation technique that we are using.

4.2 Color interpolation

We sometimes know the value of a function at a set of points, but we do not know an analytic expression for a
function that lets us calculate its value at an arbitrary point.17 In digital images, the goal of color interpolation
algorithms is to restore the original appearance in those parts where color has been affected. There exist a
number of interpolation algorithms commonly used in the literature, such as nearest neighbor, bilinear, cubic,
B-spline interpolations, among others.

In this research paper we use bilinear interpolation to approximate the color of a pixel inside a crack or hole.
For this purpose, we interpolate two nearby pixel values, belonging to the boundary of the hole. To ensure a
good interpolation process, we first measure the Euclidean distance in eight straight line directions (up, down,
left, right and four diagonals) between each boundary pixel and the pixel to be interpolated. The pixel values
used for interpolation are those whose positions are along the shortest distance. Mathematically, if I1(x1, y1)
and I2(x2, y2) denote two pixels belonging to the boundaries of an image hole and I(x, y) corresponds to the
pixel we want to interpolate, at locations (x, y), we define the Euclidean distance (dE) between I1 and I by the
expression,18

dE(I, I1) =
√
(x1 − x)2 + (y1 − y)2. (9)

The interpolated value for a pixel I at (x, y) coordinates is obtained according to the following equation,

I(x, y) =
I2(x2, y2)× dE(I, I1) + I1(x1, y1)× dE(I, I2)

dE(I1, I2)
. (10)

Figure 1 displays an RGB color image, representing a 5×5 neighborhood of a pixel I(x, y) to be interpolated.
According to the algorithm, the black pixel will be interpolated by taking into account the two nearest neighbors
along a straight line drawn from I(x, y). In this example, it is easy to note that pixels labeled as I1 and I2
show the closest distance to I(x, y). Therefore, these pixel values will be used to interpolate the value of I(x, y),
according to Eq.(10). Finally, once the interpolation has been accomplished, a noise or penumbra effect could
be detected given that the boundaries of cracks and holes are formed by gray pixels. As a result, we could have
an image showing a small visible trace of the regions where damaged areas existed. To overcome this border
problem, a median filter could be applied to the resulting image to smooth the restored regions.
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Figure 1. Bilinear interpolation by taking the two closest neighbor pixels to I(x, y).

5. EXPERIMENTAL RESULTS

The techniques presented in previous sections have been applied to the restoration of three multispectral data
sets. The first two examples were registered from artificially superimposed scripts drawn on conventional paper.
Particularly, example 1 is composed by alcohol and pen inks, while example 2 is conformed by alcohol, fluorescent
and pen inks, respectively. This last sample was scraped off to create holes for subsequent restoration. In both
samples, inks were intentionally superimposed to test the capability of the described algorithms to separate
the scripts. Example 3 corresponds to the multispectral data of a pre-Hispanic document known as Colombino
codex. This codex was elaborated in the XII century to preserve the military, political and religious feats of
the governors “8-Venado”, “Garra de Tigre” and “4 Viento” in the ancient Mixteca culture of Mesoamerica.19

Most of these codices were painted on amate paper, a kind of paper elaborated from trees cortex. Moreover,
in the following subsections we provide an explanation of the performed restoration process by the steps: 1)
multispectral image acquisition, 2) autonomous determination of pure pigments, and 3) virtual restoration.

5.1 Mulstispectral image acquisition

5.1.1 Superimposed scripts

Several images of superimposed scripts samples were acquired using a VIS-NIR hyperspectral camera (HeadWall
Photonics, Massachusetts, USA), located at the Optics and Vision Laboratory of the Polytechnic University of
Tulancingo. Table 1 presents the corresponding characteristics of the hyperspectral system. The instrument
provides scan, capture and analysis capabilities of hyperspectral data by using mainly four elements: an imaging
spectrometer, a fiber optics quartz tungsten halogen (QTH) lamp, a motorized displacement system, and a
data processing unit (HDPU). The imaging spectrometer is conformed by diffraction gratings to decompose the
incoming light spectrum into several images at wavelengths intervals from 400 to 1000 nm. The (QTH) lamp
operates in conjunction with a base plate, attached to the motorized displacement system, to scan line by line a
sample under study. Hence, the imaging spectrometer is conformed by a linear array of CCD sensors (pushbroom
system), where the platen motion is used to acquire a whole image of the sample. Finally, the HDPU allows to
quickly store and analyze the acquired data cube, since it is fitted out with a Graphics Processing Unit (GPU).20

Table 1. VIS-NIR Hyperspectral camera characteristics.

Specification Value
Spectral coverage 400 - 1000 nm
Spectral resolution 0.7414800 nm
Spatial resolution 1004× 2640 pxs
Acquisition speed 50 - 200 fps
Collected images 812
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5.1.2 Colombino codex

For preservation of cultural legacy, the Colombino codex was digitalized by the National Library of Anthropology
and History (Biblioteca Nacional de Antropologa e Historia) in Mexico city.21 For that purpose, a multispectral
camera equipped with a CCD sensor of spatial resolution equal to 2048 × 2048 was used. The camera was
connected to a rotating wheel with 16 optical filters for recording 16 images, with a bandwidth of about 25 nm,
in the interval between 380 to 780 nm. In order to minimize the radiation of light, an illumination coming from
flush light synchronized with 16 exposures was used.22

5.2 Abundance maps of pigments distribution

The aim of this step is to identify the spatial distribution of each pigment in the image through the spectral
unmixing analysis. For examples 1 and 2, twenty spectral bands were used as input to LAAMs, while for example
3 we used 16 bands. Then, for each case the distribution of pigments conforming the image was achieved
according to the following procedure. Given a multispectral image X of size m × p with n spectral bands, we
first transformed it into a bidimensional array of the form X = {x1, ...,xk} ∈ Rn, where k = m × p. Then, X
served as the input set to compute the matrix memories WXX and MXX. In addition, using the vector bounds u
and v, we obtained the corresponding scaled versions WXX and MXX , respectively. According to the discussion
presented in Section 3.2, a set of pure pigments spectra representing the spectral mixtures in the scene can be
extracted from the set {C = W ∪ M}. For this purpose, a clustering process based on the k-means algorithm
was conducted from C, and the resulting cluster centroids were employed as the columns of S in Eq.(2).

Moreover, the determination of fractional abundances for each pigment spectrum, satisfying the non-negativity
condition and relaxing the full additivity, was realized by means of the non-negative least square numerical method
(available in Matlab). This algorithm provides a good estimation of vector a for each spectral pixel x in the
image. At the end of the procedure, the values of the abundance vector were mapped into a gray-scale image
to build abundance maps, where brighter areas corresponds to maximum abundance of the corresponding ma-
terial. Figure 2 presents the abundance maps obtained for three pigments in example 1. For this example we
used a multispectral data set of size 383× 985, with 20 spectral bands. By considering three pigments and the
background paper, the number of clusters specified in the k-means algorithm was 4. Hence, S = (c1, c2, c3, c4),
where ci, for i = 1, . . . , 4, corresponds to the centroid for each cluster. Notice that our approach has effectively
separate the superimposed scripts, which can be seen in the three abundance maps presented. Although the
fractional abundances for the white paper is not presented, its corresponding spectral signature was used in the
S matrix to unmix the spectral mixtures in the image.

Figure 2. Abundance maps computed for pigments in example 1 using LAAMs and spectral unmixing. First row, from
left to right: sample RGB color image and distribution of blue ink. Second row, from left to right: distribution of black
and alcohol inks, respectively.

Figure 3 displays the abundance maps showing the distribution of pigments for our example 2. For this
experiment we use a multispectral data set of size 417 × 837, with 20 spectral bands. This time the S matrix
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Figure 3. Abundance maps computed for pigments in example 2 using LAAMs and spectral unmixing. First row, from
left to right: sample RGB color image and distribution of fluorescent ink. Second row, from left to right: distribution of
alcohol and water inks, respectively.

was conformed by vectors of each of the 4 clusters instead of their centroids in order to demonstrate that a
representative of each group can also be used. Hence S = {w7,w11,w15,m4}. In this particular example maps
1 and 2 show some holes in those positions where inks were scraped off.

Figure 4. Virtual restoration performed on example 2 using region filling and color interpolation algorithms. Left: abun-
dance map for background paper used to locate all holes. Right: digitally restored RGB color image.

5.3 Virtual restoration

Once the fractional abundances for each pigment have been computed, their corresponding maps may be used
for subsequent restoration. Therefore, the last step in the restoration process is accomplished by the use of the
tools for virtual restoration discussed in Section 4. Because some cracks and holes could not be easily detected,
the binarization of the abundance maps at a given threshold can help to emphasize those damaged portions in
the image. The region filling algorithm (see Eq.(8)) is applied on cracks and holes appearing in the binarized
maps. When all regions are filled, their respective spatial coordinates will be used to restore the original color
in the image.

On the other hand, before performing the color interpolation algorithm described in Eq. (10), it is necessary
to compose an RGB color image from the multispectral bands to perform the color restoration. For this purpose,
three spectral bands centered approximately at wavelengths of 605 nm, 555 nm, and 430 nm, respectively, can
be used.9 Then, the spatial positions of the previously filled holes will be used as a guide to interpolate the color
on the RGB color image.

Getting back to the example 2, the upper right and lower left parts of Figure 3 show the abundance maps
where holes were located. In order to perform the virtual restoration process, these holes were filled based on
the abundance map corresponding to the background since it contains all the holes simultaneously (see the left
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part of Fig. 4). After applying the region filling and color interpolation algorithms, the damaged parts can be
effectively restored as shown in the right part of Fig. 4. By comparing the resulting image against the original
one, we observe that the color was correctly restored in the regions of interest.

Figure 5. Virtual restoration performed on example 3 using region filling and color interpolation algorithms. From left to
right: sample RGB color image, filled holes used for subsequent interpolation, and digitally restored RGB color image.

Finally, the previously described algorithms were tested on a real multispectral set acquired from the Colom-
bino codex. For this purpose, we employed a subimage of 376 × 341 pixels. First, the matrix of constituent
materials spectra was formed with the resulting centroids of the clustering achieved on W ∪ M , such that
S = {c1, c2, c3, c4, c5}. Through the spectral unmixing process, five abundance maps were generated, which
served as a reference for virtual restoration. In particular maps showing the distribution of red and black pig-
ments were used to fill in the holes appearing in the body of the personage. As in the previous example, the
spatial positions of such holes were used as a guide to interpolate the color in the image. The left part of Fig. 5
displays an RGB color image of the codex formed by the combination of bands 10, 8, and 3, respectively∗. The
central and right parts of the same Figure shows, respectively, the filled holes and the resulting restored image
obtained with the discussed procedure. As one can see, the restored image allows an improved visualization and,
consequently, a better understanding of the original appearance of the document.

6. CONCLUSIONS

In this research we have described an unsupervised technique, based on multispectral imaging, that can be
effectively used for digital restoration of historical documents. Our technique is divided into three main steps:
(1) multispectral image acquisition, (2) identification of pure pigments spectra that best represent the spectral
mixtures, and (3) the virtual restoration of the damaged parts in the image. Multispectral imaging in the VIS-
NIR wavelength intervals has allowed to retrieve additional information related to the distribution of pigments
that is not visible using conventional color imaging. Furthermore, lattice autoassociative memories are used to
extract a set of pure pigments that are employed to separate the spectral mixtures at every image pixels. As a
result, the calculus of the fractional abundance maps for each pigment let us determine the locations of holes and
cracks in the image. Finally, the algorithms used for virtual restoration have helped to improve the visualization
and understanding of the original appearance of a given document.

The results achieved with the application of our technique to the previous examples state that multispectral
imaging, in conjunction with the spectral unmixing based on lattice autoassociative memories, can be used for
digital restoration of historical documents. We remark that the procedure here described is an unsupervised
technique that let us know the distribution of pigments even in those parts that are not visible to the naked eye.
In fact, the pigments distribution are the basis to perform a virtual restoration. Future work contemplates the
improvement of our color interpolation algorithm to restore those areas where boundaries have been partially
erased.

∗recall that the codex was digitized by a 16-bands camera
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