
Two Lattice Metrics Dendritic Computing for Pattern Recognition

Gerhard X. Ritter, Gonzalo Urcid∗, and Juan-Carlos Valdiviezo-N.

Abstract— An artificial neural network model based on den-
dritic computation using two lattice metrics is introduced in
this paper. A description of the mathematical framework of the
proposed model is provided and its corresponding learning algo-
rithm is presented in mathematical pseudocode. Computational
experiments are given to demonstrate the effectiveness and
performance of the learning algorithm as well as its application
to some illustrative pattern recognition problems.

I. INTRODUCTION

Several novel approaches and techniques in artificial neural
networks (ANNs), computer vision, image processing, and
pattern recognition are grounded in lattice algebra [1], [2].
ANN models based on lattice operations are known as
morphological neural networks (MNNs) or more generally as
lattice neural networks (LNNs) and have been successfully
applied to solve theoretical as well as application problems
[3]–[9]. Other developments, for example, include morpho-
logical perceptrons and computational intelligence based
on lattice theory [10]–[16]. In this paper, we restrict our
discussion to LNNs that employ dendritic computing whose
mathematical rationale was given in [11] and its biophysical
motivation can be found in several works on brain theory
[17]–[22].

The reason for using lattice operations when modeling
dendritic computations is two-fold. First, lattice operations
are extremely fast as they do not involve multiplication but
only addition and the min and max operations. Second,
several researchers have proposed that dendrites, and not the
neurons, are the elementary computing devices of the brain,
capable of implementing the logical functions AND, OR, and
NOT. A simple model of a single neuron with dendritic
structure using lattice operations was proposed in [11].
where it was shown that any compact region of ℝ𝑛, can be
approximated to within any given degree of accuracy using
a single neuron with dendritic structure. Thus, any two-class
pattern recognition problem, where one class is a compact
subset of ℝ𝑛 can be resolved with a single neuron. Another
advantage of LNNs is the correct identification of all pattern
vectors of the training sets after training stops. Also, during
training, growth and elimination of synaptic connections and
dendritic branches take place without a priori knowledge.
Generally, these LNNs have shown superior performance
when compared with several other commonly used ANNs.
Nevertheless, misclassification of test data does occur and is

G.X. Ritter is with the CISE Department, University of Florida, FL,
USA; G. Urcid (corresponding author) is with the Optics Department,
INAOE, Tonantzintla, Pue., MX; J-C. Valdiviezo-N is with the Engineer-
ing Department, UPT, Tulancingo, Hgo, MX. (email’s:ritter@cise.ufl.edu.,
gurcid@inaoep.mx, carlos.valdiviezo@upt.edu.mex)

G. Urcid and J-C. Valdiviezo-N are grateful to SNI-CONACYT for grants
22036 and 57564, respectively.

usually due to the use of hyperboxes. The major purpose of
this paper is to introduce a new model that eliminates the
extreme boxiness and generalizes the various models derived
from the original model presented in [11].

The remaining sections are arranged as follows. Section II
focuses on the mathematical background that we deem neces-
sary for a better understanding of the basic concepts of lattice
group operations. Section III provides a brief review of lattice
based dendritic computing and states a fundamental theorem
that establishes the computational capabilities of single layer
lattice perceptrons. In the same section a summary of two
basic algorithmic strategies used for training is included as
well as the problem associated with the hyperbox approach.
Section IV introduces the new dendritic model based on two
lattice metrics and presents simple examples that demonstrate
its superiority over the original model. In the same section
a learning algorithm is outlined together with illustrative
pattern recognition problems. We close the paper with Sec-
tion V giving the conclusions and some observations for
future work.

II. SOME LATTICE THEORY AND GEOMETRY

The computational framework for LNNs is based on
lattice group operations. Here, we use the lattice groups
(ℝ,∨,∧,+) and (ℝ𝑛,∨,∧,+), where ℝ denotes the set of
real numbers and ℝ𝑛 its 𝑛-fold Cartesian product so that
x ∈ ℝ𝑛 is the 𝑛-tuple (𝑥1, . . . , 𝑥𝑛) with 𝑥𝑖 ∈ ℝ for 𝑖 =
1, . . . , 𝑛. When dealing with the set ℝ, the binary operation
∨, ∧, and +, denote the maximum, minimum, and addition
of two real numbers, respectively. For x,y ∈ ℝ𝑛, x ∨ y =
(𝑥1 ∨ 𝑦1, . . . , 𝑥𝑛 ∨ 𝑦𝑛) and x ∧ y = (𝑥1 ∧ 𝑦1, . . . , 𝑥𝑛 ∧ 𝑦𝑛),
while + denotes vector addition. Occasionally it becomes
convenient to use the operations of the bounded lattice
ordered group, or blog, (ℝ±∞,∨,∧,+,+∗), where ℝ±∞ =
ℝ ∪ {−∞,∞}. Here 𝑎 ∨ −∞ = −∞ ∨ 𝑎 = 𝑎 and
𝑎 ∧ ∞ = ∞ ∧ 𝑎 = 𝑎. Similarly, 𝑎 ∨ ∞ = ∞ ∨ 𝑎 = ∞
and 𝑎 ∧ −∞ = −∞ ∧ 𝑎 = −∞ for 𝑎 ∈ ℝ±∞. Setting
ℝ∞ = ℝ ∪ {∞} and ℝ−∞ = ℝ ∪ {−∞}, we define
𝑎+∞ =∞+𝑎 =∞+∗𝑎 = 𝑎+∗∞ =∞ for all 𝑎 ∈ ℝ∞, and
𝑎+(−∞) = (−∞)+𝑎 = (−∞)+∗ 𝑎 = 𝑎+∗ (−∞) = −∞
for all 𝑎 ∈ ℝ−∞ where + = +∗ in the underlying additive
group ℝ of the blog (see [2] for more details).

The metrics for ℝ𝑛 that can be defined solely in terms
of lattice group operations are the 𝐿1 and 𝐿∞ metrics. The
𝐿1 metric, defined as d1(x,y) =

∑𝑛
𝑖=1 ∣𝑥𝑖 − 𝑦𝑖∣, is known

as the “city-block” or “Manhattan” distance and the 𝐿∞
metric, defined as d∞(x,y) =

⋁𝑛
𝑖=1 ∣𝑥𝑖 − 𝑦𝑖∣, is known as

the Chebyshev or “chessboard” distance.
The set 𝑆𝑛−1

𝑝 = {x ∈ ℝ𝑛 : d𝑝(0,x) = 1}, where 0
denotes the origin and 𝑝 ∈ {1,∞}, defines the (𝑛 − 1)-

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 45

dimensional standard unit sphere of radius one in the metric
space (ℝ𝑛, d𝑝). For 𝑝 = ∞ and 𝑛 = 2, the 1-sphere 𝑆1

∞
(“circle”), corresponds to the boundary of the square 𝐼2 =
{x ∈ ℝ2 : −1 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, 2} and, for 𝑛 = 3, the
standard unit 2-sphere, 𝑆2

∞, corresponds to the boundary of
the cube 𝐼3 = {x ∈ ℝ3 : −1 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, 2, 3} as
shown in Fig. 1. In higher dimensions the geometry of the
sphere 𝑆𝑛−1

∞ remains simple since it is the boundary of the
hypercube 𝐼𝑛 = {x ∈ ℝ𝑛 : −1 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, . . . , 𝑛}.
Equivalently, 𝐼𝑛 denotes the compact set bounded by the 2𝑛
hyperplanes 𝑥𝑖 = −1 and 𝑥𝑖 = 1, where 𝑖 = 1, . . . , 𝑛.

1x

2x

1

1

1−

1−

3x

2x

1x

1

1−
1

1−

1

1−

1x

2x

3x

1−

1−

1

1
1

1x

2x

1−

1−

1

1

Fig. 1. Upper left: the 1-sphere 𝑆1∞ ⊂ ℝ
2 (square); upper right, the 2-

sphere 𝑆2∞ ⊂ ℝ
3 (cube). Lower left: the 1-sphere 𝑆1

1 ⊂ ℝ
2 (rhombus);

lower right, the 2-sphere 𝑆2
1 ⊂ ℝ

3 (octahedron).

The geometry of 𝑆𝑛−1
1 and the set it bounds is more

complex (see the lower part of Fig. 1 for 𝑛 = 2, 3). The
area bounded by the 1-sphere 𝑆1

1 is the rhombus bounded by
the four lines 𝑥1+𝑥2 = −1, 𝑥1+𝑥2 = 1, 𝑥1−𝑥2 = −1, and
𝑥1−𝑥2 = 1. Defining 𝐸1(x) = 𝑥1+𝑥2 and 𝐸2(x) = 𝑥1−𝑥2,
it is easy to see that the set bounded by 𝑆1

1 is given by

𝑃 2 = {x ∈ ℝ2 : −1 ≤ 𝐸𝑖(x) ≤ 1, 𝑖 = 1, 2} (1)

Similarly, the compact set bounded by the 2-sphere 𝑆2
1 is the

octahedron 𝑃 3 bounded by eight planes that are generated
by the eight sets of affinely independent points:

𝑉1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
𝑉2 = {(1, 0, 0), (0, 1, 0), (0, 0,−1)},
𝑉3 = {(1, 0, 0), (0,−1, 0), (0, 0, 1)},
𝑉4 = {(1, 0, 0), (0,−1, 0), (0, 0,−1)},
𝑉5 = −𝑉1, 𝑉6 = −𝑉2, 𝑉7 = −𝑉3, and 𝑉8 = −𝑉4,

where −𝑉1 = {(−1, 0, 0), (0,−1, 0), (0, 0,−1)} and for
𝑖 = 2, 3, 4, −𝑉𝑖 is defined in an analogous fashion. Setting
𝐸1(x) = 𝑥1 + 𝑥2 + 𝑥3, 𝐸2(x) = 𝑥1 + 𝑥2 − 𝑥3, 𝐸3(x) =
𝑥1 − 𝑥2 + 𝑥3, and 𝐸4(x) = 𝑥1 − 𝑥2 − 𝑥3, it is not difficult
to establish that

𝑃 3 = {x ∈ ℝ3 : −1 ≤ 𝐸𝑖(x) ≤ 1, 𝑖 = 1, . . . , 4} (2)

Equations 1 and 2 readily generalize to any dimension 𝑛 > 3.
Let e1, . . . , e𝑛 denote the standard orthonormal basis of the
vector space ℝ𝑛, where e𝑖 is defined by 𝑒𝑖𝑗 = 1 if 𝑗 = 𝑖,
and 𝑒𝑖𝑗 = 0 if 𝑗 ∕= 𝑖. Observe that the vector p1 = (1, 1) =
(1, 0) + (0, 1) = e1 + e2 is perpendicular to the two lines
𝐸1(x) = ±1 in Eq 1, while the vector p2 = (1,−1) =
(1, 0) + (0,−1) = e1 − e2 is perpendicular to the two lines
𝐸2(x) = ±1. Similarly, the vector p1 = (1, 1, 1) = e1+e2+
e3 is orthogonal to the two planes 𝐸1(x) = ±1 determined
by 𝑉1 and 𝑉5, the vector p2 = (1, 1,−1) = e1 + e2 − e3

is orthogonal to the two planes 𝐸2(x) = ±1 determined by
𝑉2 and 𝑉6, the vector p3 = (1,−1, 1) = e1 − e2 + e3 is
orthogonal to the two planes 𝐸3(x) = ±1 generated by 𝑉3
and 𝑉7, and the vector p4 = (1,−1,−1) = e1 − e2 − e3 is
orthogonal to the two planes 𝐸4(x) = ±1 generated by 𝑉4
and 𝑉8.

Next, let ℤ2𝑛 = {0, 1, . . . , 2𝑛 − 1} denote the set of
integers modulo 2𝑛, while ℤ𝑛2 = {b : b = (𝑏1, . . . , 𝑏𝑛), 𝑏𝑖 ∈
ℤ2, 𝑖 = 1, . . . , 𝑛} denotes the set of 𝑛-dimensional binary
numbers. Clearly, the two sets ℤ2𝑛 and ℤ𝑛2 are isomorphic.
For 𝑖, 𝑗 = 1, . . . , 𝑛, let the function 𝛽(𝑖−1, 𝑗) denote the bit
value of the 𝑗-th coordinate of the binary number b𝑖 ∈ ℤ𝑛2
representing the integer 𝑖− 1 ∈ ℤ2𝑛 . That is,

𝛽(𝑖− 1, 𝑗) = mod{⌊(𝑖− 1)/2𝑗⌋, 2} = 𝑏𝑖𝑗 ∈ {0, 1}. (3)

The bipolar vectors p𝑖, where 𝑖 = 1, . . . , 2𝑛−1, are defined
by 𝑝𝑖𝑗 = 1 if 𝑏𝑖𝑗 = 0, and 𝑝𝑖𝑗 = −1 if 𝑏𝑖𝑗 = 1 where
𝑗 = 1, . . . , 𝑛. Thus, p𝑖 = ((−1)𝛽(𝑖−1,1), . . . , (−1)𝛽(𝑖−1,𝑛)).
If 𝐸𝑖(x) is defined as the dot product 𝐸𝑖(x) = p𝑖 ⋅ x, then
setting 𝐸𝑖(x) = 𝑏, where 𝑏 is an arbitrary constant, results
in a hyperplane with p𝑖 orthogonal to this hyperplane. The
𝑛-dimensional polytope

𝑃𝑛 = {x ∈ ℝ𝑛 : −1 ≤ 𝐸𝑖(x) ≤ 1, 𝑖 = 1, . . . , 2𝑛−1}, (4)

where 𝐸𝑖(x) = p𝑖 ⋅ x is called the standard star polytope.
Hypercubes and the standard star polytopes are special cases
of hyperboxes and star polytopes. Given a set of constants
{𝑤ℓ𝑖 : ℓ ∈ {0, 1}, 𝑤1

𝑖 < 𝑤
0
𝑖 , 𝑖 = 1, . . . , 𝑛}, then the set

𝐻𝑛 = {x ∈ ℝ𝑛 : 𝑤1
𝑖 ≤ 𝑥𝑖 ≤ 𝑤0

𝑖 , 𝑖 = 1, . . . , 𝑛} (5)

is called an 𝑛-dimensional hyperbox. If for some non-empty
subset {𝑖1, . . . , 𝑖𝑘} ⊂ {1, . . . , 𝑛} we have 𝑤1

𝑖𝑗
= 𝑤0

𝑖𝑗
for

𝑗 = 1, . . . , 𝑘, then the set {x ∈ ℝ𝑛 : 𝑤1
𝑖 ≤ 𝑥𝑖 ≤ 𝑤0

𝑖 , 𝑖 =
1, . . . , 𝑛} is an (𝑛− 𝑘)-dimensional hyperbox in ℝ𝑛. If for
some 𝑖 ∈ {1, . . . , 𝑛}, 𝑤1

𝑖 = −∞ or 𝑤0
𝑖 =∞ (or both), then

𝐻𝑛 is said to be open ended at 𝑥𝑖 = −∞ or at 𝑥𝑖 =∞ (or
at 𝑥𝑖 = ±∞), respectively. Similarly, given a set of constants
{𝑤ℓ𝑖 : ℓ ∈ {0, 1}, 𝑤1

𝑖 < 𝑤
0
𝑖 , 𝑖 = 1, . . . , 2𝑛−1}, then the set

𝑃𝑛 = {x ∈ ℝ𝑛 : 𝑤1
𝑖 ≤ 𝐸𝑖(x) ≤ 𝑤0

𝑖 , 𝑖 = 1, . . . , 2𝑛−1} (6)

46

is called a star polytope or 𝐿1-polytope. Lower dimensional
star polytopes and open endedness at 𝐸𝑖(x) are defined in
analogy with these concepts for hyperboxes.

III. LATTICE BASED DENDRITIC COMPUTING

Using the model of a neuron with dendritic structure as
described in [11], a single layer lattice perceptron (SLLP)
can be defined similar in structure to the classical single
layer perceptron (SLP). The main differences between these
two models is that the output neurons of the SLLP have
dendritic structures and the neural operations are based
on lattice algebraic operations. Hence, the computational
capabilities of an SLLP are different from those of an SLP
as well as those of multilayer perceptrons (MLPs). For
example, an SLLP has no hidden layers. For the sake of
completeness we summarize next the computational power
of SLLPs. Suppose 𝑋1, 𝑋2, . . . , 𝑋𝑚 denotes a collection
of disjoint compact subsets of ℝ𝑛 and d represents one
of the metrics d1 or d∞. The goal is to classify, for all
𝑗 = 1, . . . ,𝑚, every point of 𝑋𝑗 as a point belonging to
class 𝐶𝑗 and not belonging to class 𝐶𝑖 whenever 𝑖 ∕= 𝑗.
The following result establishes the specific capabilities of
SLLPs.

Theorem 3.1: Let d ∈ {d1, d∞}. If {𝑋1, 𝑋2, . . . , 𝑋𝑚} is
a collection of disjoint compact subsets of ℝ𝑛, then there
exist a positive number 𝛿 such that for any positive number
𝜀 with 𝜀 < 𝛿 there exists an SLLP that assigns each point
x ∈ ℝ𝑛 to class 𝐶𝑗 whenever x ∈ 𝑋𝑗 and not to class 𝐶𝑗 if
d(x, 𝑋𝑗) > 𝜀, where 𝑗 ∈ {1, . . . ,𝑚}. Furthermore, no point
x ∈ ℝ𝑛 is assigned to more than one class.

The theorem and its proof are a straight forward general-
ization of the two-class theorem presented in [11]. Thus, a
point x ∈ ℝ𝑛 within the 𝜀-band surrounding 𝑋𝑗 , but not in
𝑋𝑗 , will be assigned to either class 𝐶𝑗 or 𝐶0 = (

∪𝑚
𝑖=1 𝐶𝑖)

𝑐,
but not both.

Similar to the MLP, the SLLP consists of 𝑛 input neu-
rons 𝑁1, . . . , 𝑁𝑛, corresponding to the dimensions of the
pattern vectors under consideration, and 𝑚 output neu-
rons 𝑀1, . . . ,𝑀𝑚, corresponding to the number of pattern
classes. Each output neuron 𝑀𝑗 has a dendritic arborization
consisting of a finite number, 𝐾𝑗 , of branches, where the
𝑘-th branch is denoted by 𝑑𝑗𝑘, for 𝑘 ∈ {1, . . . ,𝐾𝑗}. We
assume that the synapses of 𝑀𝑗 reside on these dendritic
branches. The value of a neuron 𝑁𝑖 propagates through its
axonal tree all the way to the terminal branches that make
contact with the neuron 𝑀𝑗 (𝑗 = 1, . . . ,𝑚). The synaptic
weight associated with a synapse on the 𝑘th dendrite of 𝑀𝑗

receiving input from a terminal axonal branch of neuron
𝑁𝑖 is denoted by 𝑤ℓ𝑖𝑗𝑘, where the superscript ℓ ∈ {0, 1}
distinguishes between excitatory (ℓ = 1) and inhibitory (ℓ =
0) postsynaptic response at the synaptic site of the dendrite.
Figure 2 provides a simple schematic of this setup. The 𝑘th
dendrite of 𝑀𝑗 will respond to the total input received from
the neurons 𝑁1, . . . , 𝑁𝑛 and will either accept or inhibit the

1N
iN nN

1x ix nx

jM

jy

j1d

j2d

jjKd

1
1j1w 1

ij1w j

0
ijKw

0
nj2w

j

1
njKw

0
1j2w

1
ij2w

Fig. 2. An SLLP with dendritic structures. Terminal branches of axonal
fibers originating from the input neurons make contact with synaptic sites
on dendritic branches of 𝑀𝑗 , denoted by 𝑑𝑗𝑘 . Synaptic sites marked by a
bullet (∙) correspond to synaptic weights 𝑤1

𝑖𝑗𝑘 and synaptic sites marked
by a circle (∘) correspond to weights 𝑤0

𝑖𝑗𝑘 .

received input. The computation of the 𝑘th dendrite 𝑑𝑗𝑘 of
𝑀𝑗 is given by

𝜏𝑘𝑗(x) = 𝑝𝑘𝑗
⋀

𝑖∈𝐼𝑘

⋀

ℓ∈𝐿𝑖𝑘

(−1)1−ℓ (𝑥𝑖 + 𝑤ℓ𝑖𝑗𝑘
)
, (7)

where x = (𝑥1, . . . , 𝑥𝑛) denotes the input value for the
neurons 𝑁1, . . . , 𝑁𝑛, with 𝑥𝑖 representing the value of 𝑁𝑖,
𝐼𝑘 ⊆ {1, . . . , 𝑛} corresponds to the set of all input neurons
with terminal fibers that synapse on the 𝑘th dendrite of 𝑀𝑗 ,
i.e., the set {𝑁𝑖 : 𝑖 ∈ 𝐼𝑘}, 𝐿𝑖𝑘 ⊆ {0, 1} corresponds to the
set of terminal fibers of 𝑁𝑖 that synapse on the 𝑘th dendrite
of 𝑀𝑗 , and 𝑝𝑘𝑗 ∈ {−1, 1} denotes the excitatory (𝑝𝑘𝑗 = 1)
or inhibitory (𝑝𝑘𝑗 = −1) postsynaptic response of the 𝑘th
dendrite of 𝑀𝑗 to the received input.

It follows from the formulation 𝐿𝑖𝑘 ⊆ {0, 1} that the 𝑖th
neuron 𝑁𝑖 can have at most two synapses on a given dendrite
𝑘. Also, if the value ℓ = 1, then the postsynaptic response
value (𝑥𝑖 +𝑤

1
𝑖𝑗𝑘) is viewed as excitatory, and inhibitory for

ℓ = 0 since in this case we have −(𝑥𝑖 + 𝑤0
𝑖𝑗𝑘). In more

precise mathematical terms, if 𝑁𝑖 has two synapses on the
𝑘th dendrite of 𝑀𝑗 , then the incoming information x ∈ ℝ𝑛
will result in an excitatory post-synaptic response in the 𝑘th
dendrite if and only if (𝑥𝑖 + 𝑤

1
𝑖𝑗𝑘) ∧ −(𝑥𝑖 + 𝑤0

𝑖𝑗𝑘) ≥ 0 or,
equivalently, if and only if −𝑤1

𝑖𝑗𝑘 ≤ 𝑥𝑖 ≤ −𝑤0
𝑖𝑗𝑘. The value

𝜏𝑘𝑗(x) is passed to the cell body and the state of 𝑀𝑗 is
a function of the input received from all its dendrites. The
computed value received by 𝑀𝑗 from its dendritic tree is
given by

𝜏𝑗(x) = 𝑝𝑗

𝐾𝑗⋀

𝑘=1

𝜏𝑘𝑗(x), (8)

47

where 𝐾𝑗 denotes the total number of dendritic branches
of 𝑀𝑗 and 𝑝𝑗 = ±1 denotes the response of the cell
body to the received dendritic input. Here again, 𝑝𝑗 = 1
means that the total postsynaptic response of the cell to the
received input is excitatory, while 𝑝𝑗 = −1 means that the
cell total postsynaptic response is inhibitory. The next state
of 𝑀𝑗 is determined by an activation function 𝑓 , namely
𝑦𝑗 = 𝑓 [𝜏𝑗(x)]. In this exposition we restrict our discussion
to the hard-limiter

𝑓 [𝜏𝑗(x)] =

{
1⇔ 𝜏𝑗(x) ≥ 0
0⇔ 𝜏𝑗(x) < 0

. (9)

Variants of two approaches referred to as the elimination
and merge procedures are current techniques for training
SLLPs [13]–[14]. The elimination procedure takes out
foreign training patterns from a region determined by a
given class of training patterns, while the merging procedure
builds a region of a given class of training patterns through
unions of regions containing only training patterns of
that class. Algorithms implementing elimination or merge
techniques have many desirable properties, including fast
convergence, clear geometric interpretation, 100% accurate
classification of the training data, and the capability of
approximating, to within any given degree of accuracy, any
compact, connected or disconnected shape in Euclidean
space. However, a major problem encountered by SLLP
training algorithms is that many shapes cannot be modeled
exactly or require an unreasonably large number of dendritic
branches for a close approximation as explained in the next
example.

Example 1: The shaded triangle in Fig. 3 is bounded by
only three lines but its points cannot be classified exactly by
either the elimination or merging techniques. In the left-hand
illustration, the smallest rectangle enclosing all the points
of the triangle is 𝑅1 = {x ∈ ℝ2 : 0 ≤ 𝑥𝑖 ≤ 2, 𝑖 = 1, 2},
and after three elimination cycles, not all the white area
in 𝑅1 has been eliminated. Similarly, the right-hand side
illustration shows the grey area obtained by merging 4
maximal rectangles containing only class 𝐶1 data but not
all the 𝐶1 data.

1x

2x

1

1

2

2

0 1x

2x

2

2

1

10

Fig. 3. If 𝐶1 are points in the triangle and 𝐶0 points in its complement,
then the first few steps in the elimination and merging learning procedures
of an SLLP are illustrated on the left and right side respectively.

The intersection 𝐻2∩𝑃 2 of the smallest rectangle 𝐻2 and
the smallest rectangle 𝑃 2 containing the triangular data set
in Fig. 4 is exactly the triangle. Direct computation shows
that x ∈ ℝ2 is a point in the triangle if and only if 0 ≤
𝑥𝑖 ≤ 2 for 𝑖 = 1, 2, 0 ≤ 𝐸1(x) ≤ 4, and 0 ≤ 𝐸2(x) ≤
2. The corresponding lattice algebra expression satisfies the
following inequality, (2− 𝑥1) ∧ 𝑥1 ∧ (2− 𝑥2) ∧ 𝑥2∧
(4−𝐸1(x))∧𝐸1(x)∧ (2−𝐸2(x))∧𝐸2(x) ≥ 0, and whose
left side can be written as

𝜏(x) =

2⋀

𝑖=1

1⋀

ℓ=0

(−1)1−ℓ(𝑥𝑖 + 𝑤ℓ𝑖) ∧
2⋀

𝑖=1

1⋀

ℓ=0

(−1)1−ℓ(𝐸𝑖(x) + 𝜔ℓ𝑖), (10)

where 𝑤0
1 = −2, 𝑤1

1 = 0, 𝑤0
2 = −2, 𝑤1

2 = 0, 𝜔0
1 = −4,

𝜔1
1 = 0, 𝜔0

2 = −2, 𝜔1
2 = 0, and 𝜏(x) ≥ 0 if and only if

x ∈ 𝐻2 ∩ 𝑃 2.

1N

M

y

2−
0

2−

4−

1d

2N 1E 2E

0
0

0
1w

0
2w

1
1w

1
2w 0

1ω1
1ω

1
2ω

0
2ω

2x
4

4
1x

2

2

1 1 2

1

() 4
0 () 4

E x x
E
= + =

≤ ≤
x

x

0

2 1 2

2

() 2
0 () 2

E x x
E

= − =
≤ ≤

x
x

2−

Fig. 4. The two minimal 𝐻2 and 𝑃 2 rectangles containing the triangular
region that equals 𝐻2 ∩ 𝑃 2 and the neural diagram representing its SLLP.

Equation 10 can be interpreted as a SLLP with four input
neurons 𝑁1, 𝑁2, 𝐸1, 𝐸2, and one output neuron 𝑀 having

48

one dendrite 𝑑1 capable of computing the value 𝜏1(x) = 𝜏(x)
for any input vector x ∈ ℝ2 (see bottom of Fig. 4).

For an input vector x, a neuron 𝑁𝑖 transmits the value 𝑥𝑖
along its axonal branches to those synaptic sites on 𝑑1 whose
weight values are 𝑤ℓ𝑖 . In contrast, the neuron 𝐸𝑖 produces
the output 𝐸𝑖(x) = 𝑝𝑖 ⋅ x and transmits it along its axon to
𝑑1. The biological interpretation would be that 𝐸𝑖 transmits a
spike train, with the spikes transmitting the variables making
up the expression of 𝐸𝑖(x). The terminal axonal fibers of 𝐸𝑖
impinge on the synaptic sites having weights 𝜔ℓ𝑖 .

IV. THE TWO LATTICE METRICS MODEL

We remark that the triangular region exhibited in Ex-
ample 1 and specified by Eq. 10 serves as the motivation
for the development of the (d1, d∞)-model or two lattice
metrics model. This model generalizes the SLLP model
defined by Eqs. 7-8 and, hence, inherits all the desirable
properties of the earlier model with increased classification
performance. The (d1, d∞)-model begins with a larger set of
input neurons, namely 𝑁1, . . . , 𝑁𝑛, 𝐸1, . . . , 𝐸2𝑛−1 , and 𝑚
output neurons 𝑀1, . . . ,𝑀𝑚, where 𝑚 corresponds to the
number of pattern classes under consideration. In contrast
to the dendritic description given in Section 3, here each
dendrite 𝑑𝑗𝑘 of 𝑀𝑗 may have two sub-branches, denoted by
𝑑𝑁𝑗𝑘 and 𝑑𝐸𝑗𝑘. The branch 𝑑𝑁𝑗𝑘 is reserved for terminal axonal
fibers of 𝑁𝑖 type neurons, while 𝑑𝐸𝑗𝑘 is reserved for synaptic
sites of terminal axonal branches of input neuron of type 𝐸𝑖.

The postsynaptic responses of 𝑑𝑁𝑗𝑘 and 𝑑𝐸𝑗𝑘 are denoted by
𝑝𝑁𝑘𝑗 and 𝑝𝐸𝑘𝑗 , respectively. The total input received by the 𝑘th
dendrite 𝑑𝑗𝑘 of 𝑀𝑗 is given by

𝜏𝑘𝑗(x) = 𝑝
𝑁
𝑘𝑗

⋀

𝑖∈𝐼𝑁𝑘

⋀

ℓ∈𝐿𝑁
𝑘𝑖

(−1)1−ℓ(𝑥𝑖 + 𝑤ℓ𝑖𝑗𝑘) ∧

𝑝𝐸𝑘𝑗
⋀

𝑖∈𝐼𝐸𝑘

⋀

ℓ∈𝐿𝐸
𝑘𝑖

(−1)1−ℓ(𝐸𝑖(x) + 𝜔ℓ𝑖𝑗𝑘), (11)

where 𝑝𝑁𝑘𝑗 , 𝑝
𝐸
𝑘𝑗 ∈ {−1, 1}, 𝐼𝐸𝑘 ⊆ {1, . . . , 2𝑛−1} corresponds

to the set of all input neurons 𝐸𝑖 with terminal fibers that
synapse on the first branch of the 𝑘th dendrite of 𝑀𝑗 , and
𝐿𝐸𝑖𝑘 ⊆ {0, 1}. The sets 𝐼𝑁𝑘 and 𝐿𝑁𝑖𝑘 have the same meaning
as 𝐼𝑘 and 𝐿𝑖𝑘 in Eq. 7. The symbol 𝑤ℓ𝑖𝑗𝑘 denotes the
synaptic weight at synapse of 𝑁𝑖 on 𝑑𝑁𝑗𝑘 and 𝜔ℓ𝑖𝑗𝑘 denotes
the synaptic weight at synapse of 𝐸𝑖 on 𝑑𝐸𝑗𝑘. In order to
reduce the notational complexity expressed by Eq. 11, we
make the following simplification. If 𝑝𝑁𝑘𝑗 = 𝑝

𝐸
𝑘𝑗 , then 𝑑𝑗𝑘 has

no branching fibers. In this case we also allow the following
additional simplification: If 𝑤ℓ𝑖𝑗𝑘 = 𝑤ℓℎ𝑗𝑘 or 𝜔ℓ𝑖𝑗𝑘 = 𝜔ℓℎ𝑗𝑘, or
𝑤ℓ𝑖𝑗𝑘 = 𝜔ℓℎ𝑗𝑘, then the corresponding terminal axonal fibers
of neurons 𝐸𝑖 and 𝐸ℎ, or 𝑁𝑖 and 𝑁ℎ, or, 𝐸𝑖 and 𝑁ℎ (or
𝑁𝑖 and 𝐸ℎ), terminate on the same synaptic site of 𝑑𝑗𝑘 as
illustrated in Fig. 5. The value received by the neuron 𝑀𝑗 is
again 𝜏𝑗(x) as defined in Eq. 8. Note that, Eq. 11 remains
simple in the sense that it only involves the lattice group
operations of (ℝ,∨,∧,+) and no multiplications. As before,
the value 𝜏𝑘𝑗(x) is passed to the cell body of 𝑀𝑗 . The
total information computed by the dendrites is combined by
𝑀𝑗 using the formulation 𝜏𝑗(x) = 𝑝𝑗

⋀𝐾𝑗

𝑘=1 𝜏𝑘𝑗(x) where

𝑝𝑗 ∈ {−1, 1} denotes the postsynaptic response of the
neuron.

Example 2: The 3-dimensional XOR problem provides an
excellent visual and algebraic comparison with the hyperbox
elimination algorithm presented in [11]. In the XOR problem
we assume all patterns under consideration are boolean, i.e.,
patterns are elements of ℤ3

2 where ℤ2 = {0, 1}. For a point
x = (𝑥1, 𝑥2, 𝑥3) ∈ ℤ3

2 define its index 𝜉 by 𝜉 = 4𝑥1 +
2𝑥2+𝑥3+1, so that x1 = (0, 0, 0), x2 = (0, 0, 1), . . . ,x8 =
(1, 1, 1). The class pattern of x𝜉 = (𝑥𝜉1, 𝑥

𝜉
2, 𝑥

𝜉
3), for 𝜉 =

1, . . . , 8, is defined in terms of the exclusive or operation ⊕
of its coordinates, 𝑐𝜉 = 𝑥

𝜉
1⊕𝑥𝜉2⊕𝑥𝜉3. Specifically, class 𝐶1 is

given by 𝐶1 = {x𝜉 ∈ ℤ3
2 : 𝑐𝜉 = 1} = {x2,x3,x5,x8} while

𝐶0 = {x𝜉 ∈ ℤ3
2 : 𝑐𝜉 = 0} = {x1,x4,x6,x7}. In this case,

only one output neuron with a dendrite is required (𝑗, 𝑘 = 1),
hence the corresponding lattice algebra expression based on
Eq. 11 is simplified to

𝜏(x) =
⋀

𝑖∈𝐼𝐸

⋀

ℓ∈𝐿𝐸
𝑖

(−1)1−ℓ(𝐸𝑖(x) + 𝑤ℓ𝑖) = (𝐸1(x)− 1)∧

(1− 𝐸2(x)) ∧ (1− 𝐸3(x)) ∧ (𝐸4(x) + 1), (12)

where 𝐿𝐸1 = 𝐿𝐸4 = {1}, 𝐿𝐸2 = 𝐿𝐸3 = {0}, 𝜔1
1 = 𝜔0

2 = 𝜔0
3 =

−1, and 𝜔1
4 = 1. Using the algorithm given in [11] results

in a net consisting of three input neurons and one output
neuron with 5 dendrites and 18 synaptic sites. In contrast,
Eq. 12 yields a network with four input neurons and one
output neuron with a single dendrite and 3 synaptic sites as
shown in Fig. 5. The 3-D XOR problem is equivalent to
the 𝑛-parity problem with 𝑛 = 3 and it has been pointed
out that a dynamic node creation algorithm for feed-forward
networks needs 2 or 3 neurons in a single hidden layer in
order to correctly classify all inputs from ℤ

3
2 [23], [24].

(0,0,1)

(1,0,0)

(0,1,0)

1x

2x

3x

M
y

2E

1
1−

1E
3E

4E

1−

1
4ω

1
1ω

0
2ω

0
3ω

Fig. 5. In the 3-D XOR problem the class 𝐶1 and class 𝐶0 points are
represented by the solid and by the hollow points, respectively. Here the
smallest box 𝐻3 containing 𝐶1 is the cube determined by the points of
𝐶0∪𝐶1 while the smallest polyhedron 𝑃 3 containing 𝐶1 is determined by
the four triangles whose vertices are all 𝐶1 points. These vertices are the
only 3-D binary points that will provide non-negative output when used as
input to the net on the right side.

Training in the two metrics model means the creation
of neural connections in terms of axonal fibers, dendritic
structures, and synapses that are grown and modified through
feedback loops triggered whenever a training pattern is

49

misclassified. The learning process is tailored to build a
network that provides 100% correct classification of train-
ing patterns. Here we generalize the elimination algorithm
presented in [14] by incorporating both, the 𝐿∞ and 𝐿1

metrics. The first part of the training algorithm is modeled
after the two class problem given in [11]. In the following
we let 𝑇 = {x𝜉 ∈ ℝ𝑛 : 𝜉 = 1, . . . , 𝑡} denote the training
set for an 𝑚 class problem 𝐶1, . . . , 𝐶𝑚, 𝑃 = {1, . . . , 𝑡},
𝑇𝑗 = {x𝜉 ∈ 𝑇 : x𝜉 ∈ 𝐶𝑗} for 𝑗 = 1, . . . ,𝑚, and 𝑐𝜉𝑗 ∈ {0, 1},
where 𝑐𝜉𝑗 = 1 if x𝜉 ∈ 𝑇𝑗 and 𝑐𝜉𝑗 = 0 if x𝜉 /∈ 𝑇𝑗 . Also,
𝑇 𝑐𝑗 = 𝑇 ∖ 𝑇𝑗 . The sets 𝐼𝑁𝑘 , 𝐿

𝑁
𝑘𝑖, 𝐼

𝐸
𝑘 , 𝐿

𝐸
𝑘𝑖 appearing in Eq. 11

are generated during training.
The following values are pre-established: for ℓ = 0, 1

and 𝑗 = 1, . . . ,𝑚 compute 𝜀𝑁𝑗 =
⋀

x∈𝑇𝑗
d∞(x, 𝑇 𝑐𝑗), where

d∞(x, 𝑇 𝑐𝑗) =
⋀

y∈𝑇 𝑐
𝑗

d∞(x,y), and 𝛿ℓ𝑁𝑗 = (−1)1−ℓ𝛼𝑁𝑗 𝜀𝑁𝑗 .

Similarly, 𝜀𝐸𝑗 =
⋀

x∈𝑇𝑗
d1(x, 𝑇

𝑐
𝑗), where d1(x, 𝑇

𝑐
𝑗) =

⋀
y∈𝑇 𝑐

𝑗
d1(x,y), and 𝛿ℓ𝐸𝑗 = (−1)1−ℓ𝛼𝐸𝑗 𝜀𝐸𝑗 . The 𝛼𝑁𝑗 , 𝛼

𝐸
𝑗

parameters are user defined and restricted to [0, 0.5). For
𝛼𝑁𝑗 = 0 or 𝛼𝐸𝑗 = 0 some elements of 𝑇𝑗 will lie on
the boundary of the region recognized by 𝑀𝑗 . Restricting
𝛼𝑁𝑗 , 𝛼

𝐸
𝑗 to (0, 0.5) aids in reducing possible overlap between

classes and will ensure that no training pattern will lie on
the boundary of the region recognized by 𝑀𝑗 . The learning
algorithm is presented below in numbered steps prefixed by
S and brief comments are provided within brackets.

ALGORITHM: 𝐿∞𝐿1-SLLP Training by Elimination

S0 𝑗 = 0 [Initialize class counter]

S1 𝑗 = 𝑗 + 1
if 𝑗 > 𝑚+ 1 then stop
else 𝑘 = 1 ; 𝐼𝑁𝑘 = {1, . . . , 𝑛} ; 𝐼𝐸𝑘 = {1, . . . , 2𝑛−1}

[If training for all output neurons is not complete, initialize
auxiliary sets for the creation of the first dendrite of 𝑀𝑗]

S2 for 𝑖 ∈ 𝐼𝑁𝑘
𝑤0
𝑖𝑗𝑘 = [−⋁𝑐𝜉𝑗=1 𝑥

𝜉
𝑖)] + 𝛿

0,𝑁
𝑗

𝑤1
𝑖𝑗𝑘 = [−⋀𝑐𝜉𝑗=1 𝑥

𝜉
𝑖] + 𝛿

1,𝑁
𝑗 ; 𝐿𝑁𝑘𝑖 = {0, 1}

for 𝑖 ∈ 𝐼𝐸𝑘
𝜔0
𝑖𝑗𝑘 = [−⋁𝑐𝜉𝑗=1𝐸𝑖(x

𝜉)] + 𝛿0,𝐸𝑗

𝜔1
𝑖𝑗𝑘 = [−⋀𝑐𝜉𝑗=1𝐸𝑖(x

𝜉)] + 𝛿1,𝐸𝑗 ; 𝐿𝐸𝑘𝑖 = {0, 1}
[Compute weights for synaptic sites of first dendrite that
determine 𝐻𝑛 ∩ 𝑃𝑛 enclosing training class 𝑇𝑗 ; 𝑘 is the
dendrite counter]

S3 𝑝𝑁𝑘𝑗 = 𝑝
𝐸
𝑘𝑗 = (−1)sgn(𝑘−1)

for 𝜉 = 1 to 𝑡

𝜏𝑁𝑘𝑗(x
𝜉) = 𝑝𝑁𝑘𝑗

⋀

𝑖∈𝐼𝑁𝑘

⋀

ℓ∈𝐿𝑁
𝑘𝑖

(−1)1−ℓ(𝑥𝜉𝑖 + 𝑤ℓ𝑖𝑗𝑘)

𝜏𝐸𝑘𝑗(x
𝜉) = 𝑝𝐸𝑘𝑗

⋀

𝑖∈𝐼𝐸𝑘

⋀

ℓ∈𝐿𝐸
𝑘𝑖

(−1)1−ℓ(𝐸𝑖(x𝜉) + 𝜔ℓ𝑖𝑗𝑘)

𝜏𝑗𝑘(x
𝜉) = 𝜏𝑁𝑘𝑗(x

𝜉) ∧ 𝜏𝐸𝑘𝑗(x𝜉)

𝜏𝑗(x
𝜉) =

𝑘⋀

ℎ=1

𝜏 𝑗ℎ(x
𝜉)

[Using all training patterns, compute partial responses for
each lattice metric and total response of current dendrite 𝑑𝑗𝑘
of output neuron 𝑀𝑗 ; sgn is the signum function]

S4 for 𝜉 = 1 to 𝑡
𝑅𝑘 = {x𝜉 ∈ 𝑇 : 𝑓(𝜏 𝑗(x𝜉)) = 1}
if 𝑅𝑘 ∖ 𝑇𝑗 = ∅ [or, if 𝑓(𝜏 𝑗(x𝜉)) = 𝑐𝜉𝑗 , ∀𝜉 ∈ 𝑃]
𝐾𝑗 = 𝑘 and return to S1

else randomly choose x𝛾 ∈ 𝑅𝑘 ∖ 𝑇𝑗
[If training for 𝑀𝑗 is successful (using the hard limiter 𝑓),
then the final number of dendrites grown by neuron 𝑀𝑗 is
𝐾𝑗 and the training of neuron 𝑀𝑗+1 can commence, else
randomly select a misclassified pattern x𝛾]

S5 𝑘 = 𝑘 + 1

𝐼𝑁𝑘 = 𝐼0,𝑁𝑘 = 𝐼1,𝐸𝑘 = {1, . . . , 𝑛}
𝐼𝐸𝑘 = 𝐼0,𝐸𝑘 = 𝐼1,𝐸𝑘 = {1, . . . , 2𝑛−1}
for 𝑖 ∈ 𝐼𝑁𝑘 , 𝐿𝑁𝑘𝑖 = {0, 1}
for 𝑖 ∈ 𝐼𝐸𝑘 , 𝐿𝐸𝑘𝑖 = {0, 1}

[Add a new dendrite 𝑘 to 𝑀𝑗 ; initialize its indexing sets]

S6 for 𝑖 ∈ 𝐼𝑁𝑘 , 𝑝, 𝑞 = 0 ; 𝑠𝑝, 𝑡𝑞 = 0

for x𝜉 ∈ 𝑇𝑗
if 𝑥𝜉𝑖 > 𝑥

𝛾
𝑖 , then 𝑝 = 𝑝+ 1, 𝑠𝑝 = 𝜉, else continue

if 𝑥𝜉𝑖 < 𝑥
𝛾
𝑖 , then 𝑞 = 𝑞 + 1, 𝑡𝑞 = 𝜉, else continue

if 𝑝 > 0

𝑑 =
⋀𝑝
𝜆=1 d∞(x𝛾 ,x𝑠𝜆) ; 𝑤0

𝑖𝑗𝑘 = −(𝑥𝛾𝑖 + 1
2𝑑)

else 𝐼0,𝑁𝑘 = 𝐼0,𝑁𝑘 ∖ {𝑖} ; 𝐿𝑁𝑘𝑖 = 𝐿
𝑁
𝑘𝑖 ∖ {0}

if 𝑞 > 0

𝑑 =
⋀𝑞
𝜆=1 d∞(x𝛾 ,x𝑠𝜆) ; 𝑤1

𝑖𝑗𝑘 = −(𝑥𝛾𝑖 − 1
2𝑑)

else 𝐼1,𝑁𝑘 = 𝐼1,𝑁𝑘 ∖ {𝑖} ; 𝐿𝑁𝑘𝑖 = 𝐿
𝑁
𝑘𝑖 ∖ {1}

𝐼𝑁𝑘 = 𝐼0,𝑁𝑘 ∪ 𝐼1,𝑁𝑘
[Cycle through input neurons of type 𝑁 and assign 𝐿∞
metric weights to new synaptic sites that may classify x𝛾

with the current dendrite 𝑑𝑗𝑘 of output neuron 𝑀𝑗]

S7 for 𝑖 ∈ 𝐼𝐸𝑘 , 𝑝, 𝑞 = 0 ; 𝑠𝑝, 𝑡𝑞 = 0

for x𝜉 ∈ 𝑇𝑗
if 𝐸𝑖(x𝜉) > 𝐸𝑖(x𝛾), then 𝑝 = 𝑝+ 1, 𝑠𝑝 = 𝜉

else continue
if 𝐸𝑖(x𝜉) < 𝐸𝑖(x𝛾), then 𝑞 = 𝑞 + 1, 𝑡𝑞 = 𝜉

else continue
if 𝑝 > 0

𝑑 =
⋀𝑝
𝜆=1 d1(x𝛾 ,x𝑠𝜆) ; 𝜔0

𝑖𝑗𝑘 = −(𝐸𝑖(x𝛾) + 1
2𝑑)

else 𝐼0,𝐸𝑘 = 𝐼0,𝐸𝑘 ∖ {𝑖} ; 𝐿𝐸𝑘𝑖 = 𝐿
𝐸
𝑘𝑖 ∖ {0}

if 𝑞 > 0

𝑑 =
⋀𝑞
𝜆=1 d1(x𝛾 ,x𝑠𝜆) ; 𝜔1

𝑖𝑗𝑘 = −(𝐸𝑖(x𝛾) − 1
2𝑑)

else 𝐼1,𝐸𝑘 = 𝐼1,𝐸𝑘 ∖ {𝑖} ; 𝐿𝐸𝑘𝑖 = 𝐿
𝐸
𝑘𝑖 ∖ {1}

𝐼𝐸𝑘 = 𝐼0,𝐸𝑘 ∪ 𝐼1,𝐸𝑘 ; loop back to S3

[Cycle through input neurons of type 𝐸 and assign 𝐿1

metric weights to new synaptic sites that may classify x𝛾

with the current dendrite 𝑑𝑗𝑘 of output neuron 𝑀𝑗]

50

It is important to realize that the training algorithm can
be modified to include a priory, probabilistic, or statistical
knowledge derived from the data or training set under con-
sideration. Thus, e.g., the parameters 𝛿ℓ𝑗 associated to neurons
of type 𝑁 or 𝐸, are independent of the coordinate index
𝑖 but could be generalized to 𝛿ℓ𝑖𝑗 by including knowledge
obtained from the spatial distribution of the 𝑖th coordinates
𝑥𝜉𝑖 of the training data. Similarly, when dealing strictly with
𝑛-dimensional Boolean patterns, then choosing 𝛼𝑗 > 0 (for
the 𝑁 ’s or 𝐸’s) is not very helpful since all patterns under
consideration are elements of the set 𝐵𝑛 = {x ∈ ℝ𝑛 : 𝑥𝑖 ∈
ℤ2, 𝑖 = 1, . . . , 𝑛}. In this case setting 𝛼𝑗 = 0 is, generally,
the best choice. We remind that if the network output class
matches the known class of a given test pattern a hit is
obtained (correct classification), otherwise a misclassification
error occurs. Hence, the proposed 𝐿∞𝐿1-SLLP recognition
capability is measured by computing the fraction of hits
relative to each input set used for testing.

Thus, given a data set, 𝑋 =
∪𝑚
𝑗=1𝑋𝑗 , a family of

training subsets, denoted by 𝑇𝑗𝑝, were generated by randomly
selecting predefined percentages 𝑝% of the total number 𝑘𝑗 of
samples in 𝑋𝑗 for 𝑗 = 1, . . . ,𝑚. Specifically, 𝑝 percentages
where considered in the range {10%, 20%, . . . , 90%} and the
corresponding test subsets are given by 𝑇 𝑐𝑗𝑝 = 𝑋𝑗∖𝑇𝑗𝑝. Also,
a finite number of runs were realized in order to compute
the overall class average fraction of hits for each selected
percentage of all samples. Thus, if ∣𝑋∣ = 𝑘 =

∑𝑚
𝑗=1 𝑘𝑗 ,

∣𝑇𝑝∣ =
∑𝑚
𝑗=1 𝑇𝑗𝑝, ∣𝑇 𝑐𝑝 ∣ =

∑𝑚
𝑗=1 𝑇

𝑐
𝑗𝑝, represent the set

cardinality of data, training, and test sets, respectively, 𝜏 is
the number of runs, 𝜌𝑟 is the number of correctly classified
test patterns, and 𝜇𝑟 denotes the number of misclassified test
patterns in each run, then the average fraction of hits is given
by,

𝑓𝑝 = 1− �̄�
𝑘

; �̄� =
1

𝜏

𝜏∑

𝑟=1

𝜇𝑟 ; 𝜌 =
1

𝜏

𝜏∑

𝑟=1

𝜌𝑟 , (13)

and 𝑘 = ∣𝑇𝑝∣+ ∣𝑇 𝑐𝑝 ∣. In (13), we set 𝜏 = 20 and use the same
value for any 𝑝. Though 𝑇𝑝 and 𝑇 𝑐𝑝 have the same number of
elements for each run with the same value of 𝑝, the sample
points belonging to each subset are different since they are
randomly generated.

The results of our computer experiments for 𝐿∞𝐿1-SLLP
learning and classification of patterns in the following
example data sets are displayed in table format and
𝛼𝑁𝑗 = 𝛼𝐸𝑗 = 0.49 for all 𝑗. The 1st column gives the
percentage 𝑝 of sample points used to build the training and
test subsets, the 2nd column provides the average number of
correctly classified data patterns using the combined 𝐿∞ and
𝐿1 lattice metrics, the 3rd column gives the average number
of misclassified inputs, the 4th and following columns
shows the average number of dendrites per class, �̄�𝑗 for
𝑗 = 1, . . . ,𝑚, as generated by the elimination algorithm,
and the last column gives the average fraction of hits.

Example 3. Here, set 𝑋 consists of 294 samples equidis-
tributed in two classes 𝐶𝑗 with 𝑗 = 1, 2, and forming a

‘Twins’ shape in the plane whose features are the 𝑥 and 𝑦
coordinates. The corresponding two-dimensional point set is
shown in Fig. 6 and Table I gives the numerical results.

Fig. 6. A discrete subset 𝑋 of ℝ2. Points belonging to class 𝐶1 are marked
by a circle (∘) and points of class 𝐶2 are marked with a disk (∙).

TABLE I

𝐿∞-𝐿1 SLLP CLASSIFICATION PERFORMANCE FOR THE ‘TWINS’ SET;

294 SAMPLES (𝑘), 2 FEATURES (𝑛), 2 CLASSES (𝑚)

𝑝 𝜌 �̄� �̄�1 �̄�2 𝑓𝑝

10% 241 53 3 2 0.820

20% 263 31 9 6 0.895

★ 22% 294 0 21 21 1.000

30% 267 27 17 7 0.908

40% 278 16 18 11 0.945

50% 279 15 20 18 0.949

60% 283 11 14 25 0.963

70% 286 8 15 34 0.973

80% 288 6 34 32 0.980

90% 291 3 43 41 0.990

Note that the entry in Table I marked with a star (★)
corresponds to a training subset composed of 64 samples
selected by border points delimiting each class, and our
algorithm provides correct classification for any input
test pattern. In this instance, the 𝐿∞𝐿1-SLLP shows
the advantage of using problem-related knowledge before
learning. Also, observe that the number of dendrites required
is much less than those required for a training subset with
80% or 90% of the patterns (cf. last two rows of Table I).

Example 4. Here we use the ‘Iris’ data set [25]-[26] with 150
samples equally distributed in 3 classes corresponding, re-
spectively, to the subspecies of Iris setosa (𝐶1), Iris versicolor
(𝐶2), and Iris virginica (𝐶3). Each sample is described by
four flower features: sepal length, sepal width, petal length,
and petal width. Table II displays the classification results.

51

TABLE II

𝐿∞-𝐿1 SLLP CLASSIFICATION PERFORMANCE FOR THE ‘IRIS’ SET;

150 SAMPLES (𝑘), 4 FEATURES (𝑛), 3 CLASSES (𝑚)

𝑝 𝜌 �̄� �̄�1 �̄�2 �̄�2 𝑓𝑝

10% 92 58 1 1 1 0.613

20% 126 24 1 2 1 0.840

30% 134 16 1 1 2 0.893

★ 38% 150 0 1 7 10 1.000

40% 134 16 1 3 2 0.893

50% 140 10 1 3 3 0.933

60% 143 7 1 5 6 0.953

70% 145 5 1 6 5 0.960

80% 147 3 1 6 7 0.980

90% 148 2 1 6 12 0.987

Note that for the data sets ‘Twins’ and ‘Iris’, a high average
fraction of hits such as 𝑓𝑝 > 0.95 is obtained for percentages
𝑝 as low as 60%. Furthermore, the entry in Table II marked
with a star (★) corresponds to a training subset composed
of 57 samples selected from an ascending lexicographic
ordering within each class, and our algorithm provides
correct classification for any input test pattern. Notice, in
particular, that the number of dendrites required is practically
the same as if 90% of the patterns were used for training (see
last row in Table II). Hence, in this case the 𝐿∞𝐿1-SLLP
used as an individual classifier delivers better performance,
e.g., against Linear or Quadratic Bayesian classifiers [27]
for which, 𝑓50 = 0.953 and 𝑓50 = 0.973 (with 𝜏 = 2),
respectively, or in comparison with an Edge-effect Fuzzy
Support Vector Machine [28] whose 𝑓60 = 0.978 (here, 𝜏
is not specified explicitly).

V. CONCLUSIONS

This paper introduces an extended training algorithm for
neural networks endowed with dendrites based on the lat-
tice metrics 𝐿∞ and 𝐿1. The mathematical background,
the 𝐿∞𝐿1-SLLP model description, and the mathematical
pseudo-code of the proposed learning by elimination algo-
rithm is given together with illustrative non-linear examples
that demonstrates its performance capabilities under random
sampling or problem-related knowledge. Future work con-
templates algorithm optimization by pruning redundant neu-
ron to dendrite connections, additional computer experiments
using higher-dimensional problems in pattern classification,
and performance comparisons with other current techniques
in the field of machine learning.

REFERENCES

[1] G. Birkhoff, Lattice Theory, American Mathematical Society Collo-
quium Publications, Vol. 25, Providence, RI, 1940.

[2] G.X. Ritter and P. Gader, “Fixed Points of Lattice Transforms and
Lattice Associative Memories,” in P. Hawkes (Ed.), Adv. in Imaging &
Electron Physics, Elsevier, San Diego, CA, Vol. 144, 165–242, 2006.

[3] V. Petridis and V.G. Kaburlasos, “Fuzzy lattice neural network (FLNN):
a hybrid model for learning,” IEEE Transactions on Neural Networks,
9, 877–890, 1998.

[4] M.A. Khabou, P.D. Gader, and J.M. Keller, “LADAR target detection
using morphological shared-weight neural networks,” Machine Vision
and Applications, 11(6) 300–305, 2000.

[5] L.F.C. Pessoa and P. Maragos, “Neural networks with hybrid morpho-
logical/rank/linear nodes: a unifying framework with applications to
handwritten character recognition,” Pattern Recognition, 33(6), 945–
960, 2000.

[6] P. Maragos, “Lattice image processing: A unification of morphological
and fuzzy algebraic systems,” Journal of Mathematical Imaging and
Vision, 22(2-3), 333–353, 2005.

[7] G.X. Ritter, G. Urcid, and L. Iancu, “Reconstruction of Noisy Patterns
Using Morphological Associative Memories,” Journal of Mathematical
Imaging and Vision, 19(2), 95–111, 2003.

[8] V.G. Kaburlasos, “Improved Fuzzy Lattice Neurocomputing (FLN) for
Semantic Neural Computing,” IEEE Proceedings of IJCNN, Portland,
OR, 1850–1855, 2003.

[9] M. Grana, I. Villaverde, J.O. Maldonado, and C. Hernandez, “Two
lattice approaches for unsupervised segmentation of hyperspectral im-
ages,” Neurocomputing, 72(10-12), 2111–2120, 2009.

[10] G.X. Ritter, L. Iancu, and G. Urcid, “Morphological perceptrons with
dendritic structure,” IEEE Proceedings of FUZZ’03, St. Louis, MO,
1296–1301, 2003.

[11] G.X. Ritter and G. Urcid, “Lattice algebra approach to single-neuron
computation,” IEEE Transactions on Neural Networks, 14(2), 282–295,
2003.

[12] G. Urcid, G.X. Ritter, and L. Iancu, “Single layer morphological
perceptron solution to 𝑁 -bit parity problem,” in LNCS, Vol. 3287,
Springer, Berlin-Heidelberg, 163–170, 2004.

[13] L. Iancu, Lattice Algebra Approach to Neural Computation, Ph.D.
Thesis, University of Florida, Gainesville, FL, 2005.

[14] G.X. Ritter and G. Urcid, “Learning in Lattice Neural Networks that
Employ Dendritic Computing,” in Computational Intelligence based on
Lattice Theory, Vol. 67, V.G. Kaburlasos, G.X. Ritter (Eds.), Springer,
Berlin, 25–44, 2007.

[15] V.G. Kaburlasos and G.X. Ritter (Eds.), Computational Intelligence
Based on Lattice Theory, Vol. 67. Springer, Berlin, 2007.

[16] H. Sossa, and E. Guevara, “Efficient training for dendrite morpholog-
ical neural networks,” Neurocomputing, 131, 132–142, 2013.

[17] C. Koch and I. Segev (Eds.), Methods in Neuronal Modeling: From
Synapses to Networks, MIT Press, Boston, 1989.

[18] W.R. Holmes and W. Rall, “Electronic Models of Neuron Dendrites
and Single Neuron Computation,” in Single Neuron Computation,
T. McKenna, J. Davis, and F. Zornetzer (Eds.), Academic Press, New
York, 7–25, 1992.

[19] G.M. Shepherd, “Canonical Neurons and their Computational Orga-
nization,” in Single Neuron Computation, T. McKenna, J. Davis, and
F. Zornetzer (Eds.), Academic Press, New York, 27–55, 1992.

[20] B.W. Mel, “Synaptic Integration in Excitable Dendritic Trees,” Journal
of Neurophysiology, 70, 1086–1101, 1993.

[21] I. Segev, “Dendritic Processing,” in The Handbook of Brain Theory
and Neural Networks, M. Arbib (Ed.), MIT Press, Boston, 282–289,
1998.

[22] B.W. Mel,“Why have Dendrites? A Computational Perspective,” in
Dendrites, G. Stuart, N. Spruston, and M.D. Hausser (Eds.), Oxford
University Press, 271–280, 1999.

[23] R. Setiono, “A Neural Network Construction Algorithm which max-
imizes the Likelihood Function,” Connectionist Science, 7, 147–166,
1995.

[24] R. Setiono, “Algorithm Techniques and their Applications,” in
C.T. Leondes (Ed.), Neural Network Systems Techniques and Appli-
cations, Vol. 5, Academic Press, San Diego, CA., 297–303, 1998.

[25] J.C. Bezdek, J. Keller, R. Krisnapuram, N.R. Pal, “Cluster Analysis
for Object Data,” in J.C. Bezdek, et al. (Eds.), Fuzzy Models and
Algorithms for Pattern Recognition and Image Processing. Kluwer
Academic, Dordrecht, The Netherlands, 87–121, 1999.

[26] A. Frank and A. Asuncion, UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. University of California, School of In-
formation & Computer Science, Irvine, CA., 2010.

[27] K. Woods, “Combination of multiple classifiers using local accuracy
estimates,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 19(4), 405–410, 1997.

[28] C-F. Li, L. Xu, and S-T. Wang, “A comparative study on improved
fuzzy support vector machines and Levenberg-Marquardt based BP
network,” Intelligent Computing, Springer LNCS, Vol. 4113, 73–82,
Berlin, 2006.

52

