Two Lattice Metrics Dendritic Computing for Pattern Recognition

Gerhard X. Ritter, Gonzalo Urcid*, and Juan-Carlos Valdiviezo-N.

Abstract

An artificial neural network model based on dendritic computation using two lattice metrics is introduced in this paper. A description of the mathematical framework of the proposed model is provided and its corresponding learning algorithm is presented in mathematical pseudocode. Computational experiments are given to demonstrate the effectiveness and performance of the learning algorithm as well as its application to some illustrative pattern recognition problems.

I. InTRODUCTION

Several novel approaches and techniques in artificial neural networks (ANNs), computer vision, image processing, and pattern recognition are grounded in lattice algebra [1], [2]. ANN models based on lattice operations are known as morphological neural networks (MNNs) or more generally as lattice neural networks (LNNs) and have been successfully applied to solve theoretical as well as application problems [3]-[9]. Other developments, for example, include morphological perceptrons and computational intelligence based on lattice theory [10]-[16]. In this paper, we restrict our discussion to LNNs that employ dendritic computing whose mathematical rationale was given in [11] and its biophysical motivation can be found in several works on brain theory [17]-[22].

The reason for using lattice operations when modeling dendritic computations is two-fold. First, lattice operations are extremely fast as they do not involve multiplication but only addition and the min and max operations. Second, several researchers have proposed that dendrites, and not the neurons, are the elementary computing devices of the brain, capable of implementing the logical functions AND, OR, and Not. A simple model of a single neuron with dendritic structure using lattice operations was proposed in [11]. where it was shown that any compact region of \mathbb{R}^{n}, can be approximated to within any given degree of accuracy using a single neuron with dendritic structure. Thus, any two-class pattern recognition problem, where one class is a compact subset of \mathbb{R}^{n} can be resolved with a single neuron. Another advantage of LNNs is the correct identification of all pattern vectors of the training sets after training stops. Also, during training, growth and elimination of synaptic connections and dendritic branches take place without a priori knowledge. Generally, these LNNs have shown superior performance when compared with several other commonly used ANNs. Nevertheless, misclassification of test data does occur and is
G.X. Ritter is with the CISE Department, University of Florida, FL, USA; G. Urcid (corresponding author) is with the Optics Department, INAOE, Tonantzintla, Pue., MX; J-C. Valdiviezo-N is with the Engineering Department, UPT, Tulancingo, Hgo, MX. (email's:ritter@cise.ufl.edu., gurcid@inaoep.mx, carlos.valdiviezo@upt.edu.mex)
G. Urcid and J-C. Valdiviezo-N are grateful to Sni-Conacyt for grants 22036 and 57564, respectively.
usually due to the use of hyperboxes. The major purpose of this paper is to introduce a new model that eliminates the extreme boxiness and generalizes the various models derived from the original model presented in [11].

The remaining sections are arranged as follows. Section II focuses on the mathematical background that we deem necessary for a better understanding of the basic concepts of lattice group operations. Section III provides a brief review of lattice based dendritic computing and states a fundamental theorem that establishes the computational capabilities of single layer lattice perceptrons. In the same section a summary of two basic algorithmic strategies used for training is included as well as the problem associated with the hyperbox approach. Section IV introduces the new dendritic model based on two lattice metrics and presents simple examples that demonstrate its superiority over the original model. In the same section a learning algorithm is outlined together with illustrative pattern recognition problems. We close the paper with Section V giving the conclusions and some observations for future work.

II. Some Lattice Theory and Geometry

The computational framework for LNNs is based on lattice group operations. Here, we use the lattice groups $(\mathbb{R}, \vee, \wedge,+)$ and $\left(\mathbb{R}^{n}, \vee, \wedge,+\right)$, where \mathbb{R} denotes the set of real numbers and \mathbb{R}^{n} its n-fold Cartesian product so that $\mathbf{x} \in \mathbb{R}^{n}$ is the n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i} \in \mathbb{R}$ for $i=$ $1, \ldots, n$. When dealing with the set \mathbb{R}, the binary operation \vee, \wedge, and + , denote the maximum, minimum, and addition of two real numbers, respectively. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, \mathbf{x} \vee \mathbf{y}=$ $\left(x_{1} \vee y_{1}, \ldots, x_{n} \vee y_{n}\right)$ and $\mathbf{x} \wedge \mathbf{y}=\left(x_{1} \wedge y_{1}, \ldots, x_{n} \wedge y_{n}\right)$, while + denotes vector addition. Occasionally it becomes convenient to use the operations of the bounded lattice ordered group, or blog, $\left(\mathbb{R}_{ \pm \infty}, \vee, \wedge,+,+^{*}\right)$, where $\mathbb{R}_{ \pm \infty}=$ $\mathbb{R} \cup\{-\infty, \infty\}$. Here $a \vee-\infty=-\infty \vee a=a$ and $a \wedge \infty=\infty \wedge a=a$. Similarly, $a \vee \infty=\infty \vee a=\infty$ and $a \wedge-\infty=-\infty \wedge a=-\infty$ for $a \in \mathbb{R}_{ \pm \infty}$. Setting $\mathbb{R}_{\infty}=\mathbb{R} \cup\{\infty\}$ and $\mathbb{R}_{-\infty}=\mathbb{R} \cup\{-\infty\}$, we define $a+\infty=\infty+a=\infty+{ }^{*} a=a+{ }^{*} \infty=\infty$ for all $a \in \mathbb{R}_{\infty}$, and $a+(-\infty)=(-\infty)+a=(-\infty)+^{*} a=a+^{*}(-\infty)=-\infty$ for all $a \in \mathbb{R}_{-\infty}$ where $+=+^{*}$ in the underlying additive group \mathbb{R} of the blog (see [2] for more details).

The metrics for \mathbb{R}^{n} that can be defined solely in terms of lattice group operations are the L_{1} and L_{∞} metrics. The L_{1} metric, defined as $\mathrm{d}_{1}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$, is known as the "city-block" or "Manhattan" distance and the L_{∞} metric, defined as $\mathrm{d}_{\infty}(\mathbf{x}, \mathbf{y})=\bigvee_{i=1}^{n}\left|x_{i}-y_{i}\right|$, is known as the Chebyshev or "chessboard" distance.

The set $S_{p}^{n-1}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathrm{d}_{p}(\mathbf{0}, \mathbf{x})=1\right\}$, where $\mathbf{0}$ denotes the origin and $p \in\{1, \infty\}$, defines the $(n-1)$ -
dimensional standard unit sphere of radius one in the metric space $\left(\mathbb{R}^{n}, \mathrm{~d}_{p}\right)$. For $p=\infty$ and $n=2$, the 1 -sphere S_{∞}^{1} ("circle"), corresponds to the boundary of the square $I^{2}=$ $\left\{\mathbf{x} \in \mathbb{R}^{2}:-1 \leq x_{i} \leq 1, i=1,2\right\}$ and, for $n=3$, the standard unit 2 -sphere, S_{∞}^{2}, corresponds to the boundary of the cube $I^{3}=\left\{\mathbf{x} \in \mathbb{R}^{3}:-1 \leq x_{i} \leq 1, i=1,2,3\right\}$ as shown in Fig. 1. In higher dimensions the geometry of the sphere S_{∞}^{n-1} remains simple since it is the boundary of the hypercube $I^{n}=\left\{\mathrm{x} \in \mathbb{R}^{n}:-1 \leq x_{i} \leq 1, i=1, \ldots, n\right\}$. Equivalently, I^{n} denotes the compact set bounded by the $2 n$ hyperplanes $x_{i}=-1$ and $x_{i}=1$, where $i=1, \ldots, n$.

Fig. 1. Upper left: the 1 -sphere $S_{\infty}^{1} \subset \mathbb{R}^{2}$ (square); upper right, the 2sphere $S_{\infty}^{2} \subset \mathbb{R}^{3}$ (cube). Lower left: the 1 -sphere $S_{1}^{1} \subset \mathbb{R}^{2}$ (rhombus); lower right, the 2 -sphere $S_{1}^{2} \subset \mathbb{R}^{3}$ (octahedron).

The geometry of S_{1}^{n-1} and the set it bounds is more complex (see the lower part of Fig. 1 for $n=2,3$). The area bounded by the 1 -sphere S_{1}^{1} is the rhombus bounded by the four lines $x_{1}+x_{2}=-1, x_{1}+x_{2}=1, x_{1}-x_{2}=-1$, and $x_{1}-x_{2}=1$. Defining $E_{1}(\mathbf{x})=x_{1}+x_{2}$ and $E_{2}(\mathbf{x})=x_{1}-x_{2}$, it is easy to see that the set bounded by S_{1}^{1} is given by

$$
\begin{equation*}
P^{2}=\left\{\mathbf{x} \in \mathbb{R}^{2}:-1 \leq E_{i}(\mathbf{x}) \leq 1, i=1,2\right\} \tag{1}
\end{equation*}
$$

Similarly, the compact set bounded by the 2 -sphere S_{1}^{2} is the octahedron P^{3} bounded by eight planes that are generated by the eight sets of affinely independent points:

$$
\begin{aligned}
& V_{1}=\{(1,0,0),(0,1,0),(0,0,1)\} \\
& V_{2}=\{(1,0,0),(0,1,0),(0,0,-1)\}, \\
& V_{3}=\{(1,0,0),(0,-1,0),(0,0,1)\}, \\
& V_{4}=\{(1,0,0),(0,-1,0),(0,0,-1)\}, \\
& V_{5}=-V_{1}, V_{6}=-V_{2}, V_{7}=-V_{3}, \text { and } V_{8}=-V_{4},
\end{aligned}
$$

where $-V_{1}=\{(-1,0,0),(0,-1,0),(0,0,-1)\}$ and for $i=2,3,4,-V_{i}$ is defined in an analogous fashion. Setting $E_{1}(\mathbf{x})=x_{1}+x_{2}+x_{3}, E_{2}(\mathbf{x})=x_{1}+x_{2}-x_{3}, E_{3}(\mathbf{x})=$ $x_{1}-x_{2}+x_{3}$, and $E_{4}(\mathbf{x})=x_{1}-x_{2}-x_{3}$, it is not difficult to establish that

$$
\begin{equation*}
P^{3}=\left\{\mathbf{x} \in \mathbb{R}^{3}:-1 \leq E_{i}(\mathbf{x}) \leq 1, i=1, \ldots, 4\right\} \tag{2}
\end{equation*}
$$

Equations 1 and 2 readily generalize to any dimension $n>3$. Let $\mathbf{e}^{1}, \ldots, \mathbf{e}^{n}$ denote the standard orthonormal basis of the vector space \mathbb{R}^{n}, where \mathbf{e}^{i} is defined by $e_{j}^{i}=1$ if $j=i$, and $e_{j}^{i}=0$ if $j \neq i$. Observe that the vector $\mathbf{p}^{1}=(1,1)=$ $(1,0)+(0,1)=\mathbf{e}^{1}+\mathbf{e}^{2}$ is perpendicular to the two lines $E_{1}(\mathbf{x})= \pm 1$ in Eq 1, while the vector $\mathbf{p}^{2}=(1,-1)=$ $(1,0)+(0,-1)=\mathbf{e}^{1}-\mathbf{e}^{2}$ is perpendicular to the two lines $E_{2}(\mathbf{x})= \pm 1$. Similarly, the vector $\mathbf{p}^{1}=(1,1,1)=\mathbf{e}^{1}+\mathbf{e}^{2}+$ \mathbf{e}^{3} is orthogonal to the two planes $E_{1}(\mathbf{x})= \pm 1$ determined by V_{1} and V_{5}, the vector $\mathbf{p}^{2}=(1,1,-1)=\mathbf{e}^{1}+\mathbf{e}^{2}-\mathbf{e}^{3}$ is orthogonal to the two planes $E_{2}(\mathbf{x})= \pm 1$ determined by V_{2} and V_{6}, the vector $\mathbf{p}^{3}=(1,-1,1)=\mathbf{e}^{1}-\mathbf{e}^{2}+\mathbf{e}^{3}$ is orthogonal to the two planes $E_{3}(\mathbf{x})= \pm 1$ generated by V_{3} and V_{7}, and the vector $\mathbf{p}^{4}=(1,-1,-1)=\mathbf{e}^{1}-\mathbf{e}^{2}-\mathbf{e}^{3}$ is orthogonal to the two planes $E_{4}(\mathrm{x})= \pm 1$ generated by V_{4} and V_{8}.

Next, let $\mathbb{Z}_{2^{n}}=\left\{0,1, \ldots, 2^{n}-1\right\}$ denote the set of integers modulo 2^{n}, while $\mathbb{Z}_{2}^{n}=\left\{\mathbf{b}: \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right), b_{i} \in\right.$ $\left.\mathbb{Z}_{2}, i=1, \ldots, n\right\}$ denotes the set of n-dimensional binary numbers. Clearly, the two sets $\mathbb{Z}_{2^{n}}$ and \mathbb{Z}_{2}^{n} are isomorphic. For $i, j=1, \ldots, n$, let the function $\beta(i-1, j)$ denote the bit value of the j-th coordinate of the binary number $\mathbf{b}^{i} \in \mathbb{Z}_{2}^{n}$ representing the integer $i-1 \in \mathbb{Z}_{2^{n}}$. That is,

$$
\begin{equation*}
\beta(i-1, j)=\bmod \left\{\left\lfloor(i-1) / 2^{j}\right\rfloor, 2\right\}=b_{j}^{i} \in\{0,1\} . \tag{3}
\end{equation*}
$$

The bipolar vectors \mathbf{p}^{i}, where $i=1, \ldots, 2^{n-1}$, are defined by $p_{j}^{i}=1$ if $b_{j}^{i}=0$, and $p_{j}^{i}=-1$ if $b_{j}^{i}=1$ where $j=1, \ldots, n$. Thus, $\mathbf{p}^{i}=\left((-1)^{\beta(i-1,1)}, \ldots,(-1)^{\beta(i-1, n)}\right)$. If $E_{i}(\mathbf{x})$ is defined as the dot product $E_{i}(\mathbf{x})=\mathbf{p}^{i} \cdot \mathbf{x}$, then setting $E_{i}(\mathbf{x})=b$, where b is an arbitrary constant, results in a hyperplane with \mathbf{p}^{i} orthogonal to this hyperplane. The n-dimensional polytope

$$
\begin{equation*}
P^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n}:-1 \leq E_{i}(\mathbf{x}) \leq 1, i=1, \ldots, 2^{n-1}\right\} \tag{4}
\end{equation*}
$$

where $E_{i}(\mathbf{x})=\mathbf{p}^{i} \cdot \mathbf{x}$ is called the standard star polytope. Hypercubes and the standard star polytopes are special cases of hyperboxes and star polytopes. Given a set of constants $\left\{w_{i}^{\ell}: \ell \in\{0,1\}, w_{i}^{1}<w_{i}^{0}, i=1, \ldots, n\right\}$, then the set

$$
\begin{equation*}
H^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n}: w_{i}^{1} \leq x_{i} \leq w_{i}^{0}, i=1, \ldots, n\right\} \tag{5}
\end{equation*}
$$

is called an n-dimensional hyperbox. If for some non-empty subset $\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots, n\}$ we have $w_{i_{j}}^{1}=w_{i_{j}}^{0}$ for $j=1, \ldots, k$, then the set $\left\{\mathbf{x} \in \mathbb{R}^{n}: w_{i}^{1} \leq x_{i} \leq w_{i}^{0}, i=\right.$ $1, \ldots, n\}$ is an $(n-k)$-dimensional hyperbox in \mathbb{R}^{n}. If for some $i \in\{1, \ldots, n\}, w_{i}^{1}=-\infty$ or $w_{i}^{0}=\infty$ (or both), then H^{n} is said to be open ended at $x_{i}=-\infty$ or at $x_{i}=\infty$ (or at $x_{i}= \pm \infty$), respectively. Similarly, given a set of constants $\left\{w_{i}^{\ell}: \ell \in\{0,1\}, w_{i}^{1}<w_{i}^{0}, i=1, \ldots, 2^{n-1}\right\}$, then the set

$$
\begin{equation*}
P^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n}: w_{i}^{1} \leq E_{i}(\mathbf{x}) \leq w_{i}^{0}, i=1, \ldots, 2^{n-1}\right\} \tag{6}
\end{equation*}
$$

is called a star polytope or L_{1}-polytope. Lower dimensional star polytopes and open endedness at $E_{i}(\mathbf{x})$ are defined in analogy with these concepts for hyperboxes.

III. Lattice Based Dendritic Computing

Using the model of a neuron with dendritic structure as described in [11], a single layer lattice perceptron (SLLP) can be defined similar in structure to the classical single layer perceptron (SLP). The main differences between these two models is that the output neurons of the SLLP have dendritic structures and the neural operations are based on lattice algebraic operations. Hence, the computational capabilities of an SLLP are different from those of an SLP as well as those of multilayer perceptrons (MLPs). For example, an SLLP has no hidden layers. For the sake of completeness we summarize next the computational power of SLLPs. Suppose $X_{1}, X_{2}, \ldots, X_{m}$ denotes a collection of disjoint compact subsets of \mathbb{R}^{n} and d represents one of the metrics d_{1} or d_{∞}. The goal is to classify, for all $j=1, \ldots, m$, every point of X_{j} as a point belonging to class C_{j} and not belonging to class C_{i} whenever $i \neq j$. The following result establishes the specific capabilities of SLLPs.

Theorem 3.1: Let $\mathrm{d} \in\left\{\mathrm{d}_{1}, \mathrm{~d}_{\infty}\right\}$. If $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ is a collection of disjoint compact subsets of \mathbb{R}^{n}, then there exist a positive number δ such that for any positive number ε with $\varepsilon<\delta$ there exists an SLLP that assigns each point $\mathrm{x} \in \mathbb{R}^{n}$ to class C_{j} whenever $\mathrm{x} \in X_{j}$ and not to class C_{j} if $\mathrm{d}\left(\mathrm{x}, X_{j}\right)>\varepsilon$, where $j \in\{1, \ldots, m\}$. Furthermore, no point $\mathrm{x} \in \mathbb{R}^{n}$ is assigned to more than one class.

The theorem and its proof are a straight forward generalization of the two-class theorem presented in [11]. Thus, a point $\mathbf{x} \in \mathbb{R}^{n}$ within the ε-band surrounding X_{j}, but not in X_{j}, will be assigned to either class C_{j} or $C_{0}=\left(\bigcup_{i=1}^{m} C_{i}\right)^{c}$, but not both.

Similar to the MLP, the SLLP consists of n input neurons N_{1}, \ldots, N_{n}, corresponding to the dimensions of the pattern vectors under consideration, and m output neurons M_{1}, \ldots, M_{m}, corresponding to the number of pattern classes. Each output neuron M_{j} has a dendritic arborization consisting of a finite number, K_{j}, of branches, where the k-th branch is denoted by $d_{j k}$, for $k \in\left\{1, \ldots, K_{j}\right\}$. We assume that the synapses of M_{j} reside on these dendritic branches. The value of a neuron N_{i} propagates through its axonal tree all the way to the terminal branches that make contact with the neuron $M_{j}(j=1, \ldots, m)$. The synaptic weight associated with a synapse on the k th dendrite of M_{j} receiving input from a terminal axonal branch of neuron N_{i} is denoted by $w_{i j k}^{\ell}$, where the superscript $\ell \in\{0,1\}$ distinguishes between excitatory $(\ell=1)$ and inhibitory ($\ell=$ 0) postsynaptic response at the synaptic site of the dendrite. Figure 2 provides a simple schematic of this setup. The k th dendrite of M_{j} will respond to the total input received from the neurons N_{1}, \ldots, N_{n} and will either accept or inhibit the

Fig. 2. An SLLP with dendritic structures. Terminal branches of axonal fibers originating from the input neurons make contact with synaptic sites on dendritic branches of M_{j}, denoted by $d_{j k}$. Synaptic sites marked by a bullet (\bullet) correspond to synaptic weights $w_{i j k}^{1}$ and synaptic sites marked by a circle (o) correspond to weights $w_{i j k}^{0}$.
received input. The computation of the k th dendrite $d_{j k}$ of M_{j} is given by

$$
\begin{equation*}
\tau_{k j}(\mathbf{x})=p_{k j} \bigwedge_{i \in I_{k}} \bigwedge_{\ell \in L_{i k}}(-1)^{1-\ell}\left(x_{i}+w_{i j k}^{\ell}\right) \tag{7}
\end{equation*}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ denotes the input value for the neurons N_{1}, \ldots, N_{n}, with x_{i} representing the value of N_{i}, $I_{k} \subseteq\{1, \ldots, n\}$ corresponds to the set of all input neurons with terminal fibers that synapse on the k th dendrite of M_{j}, i.e., the set $\left\{N_{i}: i \in I_{k}\right\}, L_{i k} \subseteq\{0,1\}$ corresponds to the set of terminal fibers of N_{i} that synapse on the k th dendrite of M_{j}, and $p_{k j} \in\{-1,1\}$ denotes the excitatory $\left(p_{k j}=1\right)$ or inhibitory ($p_{k j}=-1$) postsynaptic response of the k th dendrite of M_{j} to the received input.

It follows from the formulation $L_{i k} \subseteq\{0,1\}$ that the i th neuron N_{i} can have at most two synapses on a given dendrite k. Also, if the value $\ell=1$, then the postsynaptic response value $\left(x_{i}+w_{i j k}^{1}\right)$ is viewed as excitatory, and inhibitory for $\ell=0$ since in this case we have $-\left(x_{i}+w_{i j k}^{0}\right)$. In more precise mathematical terms, if N_{i} has two synapses on the k th dendrite of M_{j}, then the incoming information $\mathrm{x} \in \mathbb{R}^{n}$ will result in an excitatory post-synaptic response in the k th dendrite if and only if $\left(x_{i}+w_{i j k}^{1}\right) \wedge-\left(x_{i}+w_{i j k}^{0}\right) \geq 0$ or, equivalently, if and only if $-w_{i j k}^{1} \leq x_{i} \leq-w_{i j k}^{0}$. The value $\tau_{k j}(\mathbf{x})$ is passed to the cell body and the state of M_{j} is a function of the input received from all its dendrites. The computed value received by M_{j} from its dendritic tree is given by

$$
\begin{equation*}
\tau_{j}(\mathbf{x})=p_{j} \bigwedge_{k=1}^{K_{j}} \tau_{k j}(\mathbf{x}) \tag{8}
\end{equation*}
$$

where K_{j} denotes the total number of dendritic branches of M_{j} and $p_{j}= \pm 1$ denotes the response of the cell body to the received dendritic input. Here again, $p_{j}=1$ means that the total postsynaptic response of the cell to the received input is excitatory, while $p_{j}=-1$ means that the cell total postsynaptic response is inhibitory. The next state of M_{j} is determined by an activation function f, namely $y_{j}=f\left[\tau_{j}(\mathbf{x})\right]$. In this exposition we restrict our discussion to the hard-limiter

$$
f\left[\tau_{j}(\mathbf{x})\right]=\left\{\begin{array}{l}
1 \Leftrightarrow \tau_{j}(\mathbf{x}) \geq 0 \tag{9}\\
0 \Leftrightarrow \tau_{j}(\mathbf{x})<0
\end{array} .\right.
$$

Variants of two approaches referred to as the elimination and merge procedures are current techniques for training SLLPs [13]-[14]. The elimination procedure takes out foreign training patterns from a region determined by a given class of training patterns, while the merging procedure builds a region of a given class of training patterns through unions of regions containing only training patterns of that class. Algorithms implementing elimination or merge techniques have many desirable properties, including fast convergence, clear geometric interpretation, 100% accurate classification of the training data, and the capability of approximating, to within any given degree of accuracy, any compact, connected or disconnected shape in Euclidean space. However, a major problem encountered by SLLP training algorithms is that many shapes cannot be modeled exactly or require an unreasonably large number of dendritic branches for a close approximation as explained in the next example.

Example 1: The shaded triangle in Fig. 3 is bounded by only three lines but its points cannot be classified exactly by either the elimination or merging techniques. In the left-hand illustration, the smallest rectangle enclosing all the points of the triangle is $R_{1}=\left\{\mathbf{x} \in \mathbb{R}^{2}: 0 \leq x_{i} \leq 2, i=1,2\right\}$, and after three elimination cycles, not all the white area in R_{1} has been eliminated. Similarly, the right-hand side illustration shows the grey area obtained by merging 4 maximal rectangles containing only class C_{1} data but not all the C_{1} data.

Fig. 3. If C_{1} are points in the triangle and C_{0} points in its complement, then the first few steps in the elimination and merging learning procedures of an SLLP are illustrated on the left and right side respectively.

The intersection $H^{2} \cap P^{2}$ of the smallest rectangle H^{2} and the smallest rectangle P^{2} containing the triangular data set in Fig. 4 is exactly the triangle. Direct computation shows that $\mathbf{x} \in \mathbb{R}^{2}$ is a point in the triangle if and only if $0 \leq$ $x_{i} \leq 2$ for $i=1,2,0 \leq E_{1}(\mathbf{x}) \leq 4$, and $0 \leq E_{2}(\mathbf{x}) \leq$ 2 . The corresponding lattice algebra expression satisfies the following inequality, $\left(2-x_{1}\right) \wedge x_{1} \wedge\left(2-x_{2}\right) \wedge x_{2} \wedge$
$\left(4-E_{1}(\mathbf{x})\right) \wedge E_{1}(\mathbf{x}) \wedge\left(2-E_{2}(\mathbf{x})\right) \wedge E_{2}(\mathbf{x}) \geq 0$, and whose left side can be written as

$$
\begin{align*}
\tau(\mathbf{x})= & \bigwedge_{i=1}^{2} \bigwedge_{\ell=0}^{1}(-1)^{1-\ell}\left(x_{i}+w_{i}^{\ell}\right) \wedge \\
& \bigwedge_{i=1}^{2} \bigwedge_{\ell=0}^{1}(-1)^{1-\ell}\left(E_{i}(\mathbf{x})+\omega_{i}^{\ell}\right) \tag{10}
\end{align*}
$$

where $w_{1}^{0}=-2, w_{1}^{1}=0, w_{2}^{0}=-2, w_{2}^{1}=0, \omega_{1}^{0}=-4$, $\omega_{1}^{1}=0, \omega_{2}^{0}=-2, \omega_{2}^{1}=0$, and $\tau(\mathbf{x}) \geq 0$ if and only if $\mathbf{x} \in H^{2} \cap P^{2}$.

Fig. 4. The two minimal H^{2} and P^{2} rectangles containing the triangular region that equals $H^{2} \cap P^{2}$ and the neural diagram representing its SLLP.

Equation 10 can be interpreted as a SLLP with four input neurons $N_{1}, N_{2}, E_{1}, E_{2}$, and one output neuron M having
one dendrite d_{1} capable of computing the value $\tau_{1}(\mathbf{x})=\tau(\mathbf{x})$ for any input vector $\mathrm{x} \in \mathbb{R}^{2}$ (see bottom of Fig. 4).

For an input vector \mathbf{x}, a neuron N_{i} transmits the value x_{i} along its axonal branches to those synaptic sites on d_{1} whose weight values are w_{i}^{ℓ}. In contrast, the neuron E_{i} produces the output $E_{i}(\mathbf{x})=p^{i} \cdot \mathbf{x}$ and transmits it along its axon to d_{1}. The biological interpretation would be that E_{i} transmits a spike train, with the spikes transmitting the variables making up the expression of $E_{i}(\mathbf{x})$. The terminal axonal fibers of E_{i} impinge on the synaptic sites having weights ω_{i}^{ℓ}.

IV. The Two Lattice Metrics Model

We remark that the triangular region exhibited in Example 1 and specified by Eq. 10 serves as the motivation for the development of the $\left(\mathrm{d}_{1}, \mathrm{~d}_{\infty}\right)$-model or two lattice metrics model. This model generalizes the SLLP model defined by Eqs. 7-8 and, hence, inherits all the desirable properties of the earlier model with increased classification performance. The $\left(d_{1}, d_{\infty}\right)$-model begins with a larger set of input neurons, namely $N_{1}, \ldots, N_{n}, E_{1}, \ldots, E_{2^{n-1}}$, and m output neurons M_{1}, \ldots, M_{m}, where m corresponds to the number of pattern classes under consideration. In contrast to the dendritic description given in Section 3, here each dendrite $d_{j k}$ of M_{j} may have two sub-branches, denoted by $d_{j k}^{N}$ and $d_{j k}^{E}$. The branch $d_{j k}^{N}$ is reserved for terminal axonal fibers of N_{i} type neurons, while $d_{j k}^{E}$ is reserved for synaptic sites of terminal axonal branches of input neuron of type E_{i}.

The postsynaptic responses of $d_{j k}^{N}$ and $d_{j k}^{E}$ are denoted by $p_{k j}^{N}$ and $p_{k j}^{E}$, respectively. The total input received by the k th dendrite $d_{j k}$ of M_{j} is given by

$$
\begin{align*}
\tau_{k j}(\mathbf{x})= & p_{k j}^{N} \bigwedge_{i \in I_{k}^{N}} \bigwedge_{\ell \in L_{k i}^{N}}(-1)^{1-\ell}\left(x_{i}+w_{i j k}^{\ell}\right) \wedge \\
& p_{k j}^{E} \bigwedge_{i \subset I^{E}} \bigwedge_{\ell \subset I_{E}}(-1)^{1-\ell}\left(E_{i}(\mathbf{x})+\omega_{i j k}^{\ell}\right) \tag{11}
\end{align*}
$$

where $p_{k j}^{N}, p_{k j}^{E} \in\{-1,1\}, I_{k}^{E} \subseteq\left\{1, \ldots, 2^{n-1}\right\}$ corresponds to the set of all input neurons E_{i} with terminal fibers that synapse on the first branch of the k th dendrite of M_{j}, and $L_{i k}^{E} \subseteq\{0,1\}$. The sets I_{k}^{N} and $L_{i k}^{N}$ have the same meaning as I_{k} and $L_{i k}$ in Eq. 7. The symbol $w_{i j k}^{\ell}$ denotes the synaptic weight at synapse of N_{i} on $d_{j k}^{N}$ and $\omega_{i j k}^{\ell}$ denotes the synaptic weight at synapse of E_{i} on $d_{j k}^{E}$. In order to reduce the notational complexity expressed by Eq. 11, we make the following simplification. If $p_{k j}^{N}=p_{k j}^{E}$, then $d_{j k}$ has no branching fibers. In this case we also allow the following additional simplification: If $w_{i j k}^{\ell}=w_{h j k}^{\ell}$ or $\omega_{i j k}^{\ell}=\omega_{h j k}^{\ell}$, or $w_{i j k}^{\ell}=\omega_{h j k}^{\ell}$, then the corresponding terminal axonal fibers of neurons E_{i} and E_{h}, or N_{i} and N_{h}, or, E_{i} and N_{h} (or N_{i} and E_{h}), terminate on the same synaptic site of $d_{j k}$ as illustrated in Fig. 5. The value received by the neuron M_{j} is again $\tau_{j}(\mathbf{x})$ as defined in Eq. 8. Note that, Eq. 11 remains simple in the sense that it only involves the lattice group operations of $(\mathbb{R}, \vee, \wedge,+)$ and no multiplications. As before, the value $\tau_{k j}(\mathbf{x})$ is passed to the cell body of M_{j}. The total information computed by the dendrites is combined by M_{j} using the formulation $\tau_{j}(\mathbf{x})=p_{j} \bigwedge_{k=1}^{K_{j}} \tau_{k j}(\mathbf{x})$ where
$p_{j} \in\{-1,1\}$ denotes the postsynaptic response of the neuron.

Example 2: The 3-dimensional XOR problem provides an excellent visual and algebraic comparison with the hyperbox elimination algorithm presented in [11]. In the XOR problem we assume all patterns under consideration are boolean, i.e., patterns are elements of \mathbb{Z}_{2}^{3} where $\mathbb{Z}_{2}=\{0,1\}$. For a point $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{Z}_{2}^{3}$ define its index ξ by $\xi=4 x_{1}+$ $2 x_{2}+x_{3}+1$, so that $\mathbf{x}^{1}=(0,0,0), \mathbf{x}^{2}=(0,0,1), \ldots, \mathbf{x}^{8}=$ $(1,1,1)$. The class pattern of $\mathbf{x}^{\xi}=\left(x_{1}^{\xi}, x_{2}^{\xi}, x_{3}^{\xi}\right)$, for $\xi=$ $1, \ldots, 8$, is defined in terms of the exclusive or operation \oplus of its coordinates, $c_{\xi}=x_{1}^{\xi} \oplus x_{2}^{\xi} \oplus x_{3}^{\xi}$. Specifically, class C_{1} is given by $C_{1}=\left\{\mathbf{x}^{\xi} \in \mathbb{Z}_{2}^{3}: c_{\xi}=1\right\}=\left\{\mathbf{x}^{2}, \mathbf{x}^{3}, \mathbf{x}^{5}, \mathbf{x}^{8}\right\}$ while $C_{0}=\left\{\mathbf{x}^{\xi} \in \mathbb{Z}_{2}^{3}: c_{\xi}=0\right\}=\left\{\mathbf{x}^{1}, \mathbf{x}^{4}, \mathbf{x}^{6}, \mathbf{x}^{7}\right\}$. In this case, only one output neuron with a dendrite is required ($j, k=1$), hence the corresponding lattice algebra expression based on Eq. 11 is simplified to

$$
\begin{align*}
\tau(\mathbf{x}) & =\bigwedge_{i \in I^{E}} \bigwedge_{\ell \in L_{i}^{E}}(-1)^{1-\ell}\left(E_{i}(\mathbf{x})+w_{i}^{\ell}\right)=\left(E_{1}(\mathbf{x})-1\right) \wedge \\
& \left(1-E_{2}(\mathbf{x})\right) \wedge\left(1-E_{3}(\mathbf{x})\right) \wedge\left(E_{4}(\mathbf{x})+1\right) \tag{12}
\end{align*}
$$

where $L_{1}^{E}=L_{4}^{E}=\{1\}, L_{2}^{E}=L_{3}^{E}=\{0\}, \omega_{1}^{1}=\omega_{2}^{0}=\omega_{3}^{0}=$ -1 , and $\omega_{4}^{1}=1$. Using the algorithm given in [11] results in a net consisting of three input neurons and one output neuron with 5 dendrites and 18 synaptic sites. In contrast, Eq. 12 yields a network with four input neurons and one output neuron with a single dendrite and 3 synaptic sites as shown in Fig. 5. The 3-D XOR problem is equivalent to the n-parity problem with $n=3$ and it has been pointed out that a dynamic node creation algorithm for feed-forward networks needs 2 or 3 neurons in a single hidden layer in order to correctly classify all inputs from \mathbb{Z}_{2}^{3} [23], [24].

Fig. 5. In the 3-D XOR problem the class C_{1} and class C_{0} points are represented by the solid and by the hollow points, respectively. Here the smallest box H^{3} containing C_{1} is the cube determined by the points of $C_{0} \cup C_{1}$ while the smallest polyhedron P^{3} containing C_{1} is determined by the four triangles whose vertices are all C_{1} points. These vertices are the only 3-D binary points that will provide non-negative output when used as input to the net on the right side.

Training in the two metrics model means the creation of neural connections in terms of axonal fibers, dendritic structures, and synapses that are grown and modified through feedback loops triggered whenever a training pattern is
misclassified. The learning process is tailored to build a network that provides 100% correct classification of training patterns. Here we generalize the elimination algorithm presented in [14] by incorporating both, the L_{∞} and L_{1} metrics. The first part of the training algorithm is modeled after the two class problem given in [11]. In the following we let $T=\left\{\mathbf{x}^{\xi} \in \mathbb{R}^{n}: \xi=1, \ldots, t\right\}$ denote the training set for an m class problem $C_{1}, \ldots, C_{m}, P=\{1, \ldots, t\}$, $T_{j}=\left\{\mathbf{x}^{\xi} \in T: \mathbf{x}^{\xi} \in C_{j}\right\}$ for $j=1, \ldots, m$, and $c_{j}^{\xi} \in\{0,1\}$, where $c_{j}^{\xi}=1$ if $\mathbf{x}^{\xi} \in T_{j}$ and $c_{j}^{\xi}=0$ if $\mathbf{x}^{\xi} \notin T_{j}$. Also, $T_{j}^{c}=T \backslash T_{j}$. The sets $I_{k}^{N}, L_{k i}^{N}, I_{k}^{E}, L_{k i}^{E}$ appearing in Eq. 11 are generated during training.

The following values are pre-established: for $\ell=0,1$ and $j=1, \ldots, m$ compute $\varepsilon_{j}^{N}=\bigwedge_{\mathbf{x} \in T_{j}} \mathrm{~d}_{\infty}\left(\mathbf{x}, T_{j}^{c}\right)$, where $\mathrm{d}_{\infty}\left(\mathbf{x}, T_{j}^{c}\right)=\bigwedge_{\mathbf{y} \in T_{j}^{c}} \mathrm{~d}_{\infty}(\mathbf{x}, \mathbf{y})$, and $\delta_{j}^{\ell N^{j}}=(-1)^{1-\ell} \alpha_{j}^{N} \varepsilon_{j}^{N}$. Similarly, $\varepsilon_{j}^{E}=\bigwedge_{\mathbf{x} \in T_{j}} \mathrm{~d}_{1}\left(\mathbf{x}, T_{j}^{c}\right)$, where $\mathrm{d}_{1}\left(\mathbf{x}, T_{j}^{c}\right)=$ $\bigwedge_{\mathbf{y} \in T_{j}^{c}} \mathrm{~d}_{1}(\mathbf{x}, \mathbf{y})$, and $\delta_{j}^{\ell E}=(-1)^{1-\ell} \alpha_{j}^{E} \varepsilon_{j}^{E}$. The $\alpha_{j}^{N}, \alpha_{j}^{E}$ parameters are user defined and restricted to $[0,0.5)$. For $\alpha_{j}^{N}=0$ or $\alpha_{j}^{E}=0$ some elements of T_{j} will lie on the boundary of the region recognized by M_{j}. Restricting $\alpha_{j}^{N}, \alpha_{j}^{E}$ to $(0,0.5)$ aids in reducing possible overlap between classes and will ensure that no training pattern will lie on the boundary of the region recognized by M_{j}. The learning algorithm is presented below in numbered steps prefixed by S and brief comments are provided within brackets.
Algorithm: $L_{\infty} L_{1}$-SLLP Training by Elimination
SO $j=0$ [Initialize class counter]
S1 $j=j+1$
if $j>m+1$ then stop
else $k=1 ; I_{k}^{N}=\{1, \ldots, n\} ; I_{k}^{E}=\left\{1, \ldots, 2^{n-1}\right\}$
[If training for all output neurons is not complete, initialize auxiliary sets for the creation of the first dendrite of M_{j}]
S2 for $i \in I_{k}^{N}$

$$
\begin{aligned}
w_{i j k}^{0} & \left.=\left[-\bigvee_{c_{j}^{\xi}=1} x_{i}^{\xi}\right)\right]+\delta_{j}^{0, N} \\
w_{i j k}^{1} & =\left[-\bigwedge_{c_{j}^{\xi}=1} x_{i}^{\xi}\right]+\delta_{j}^{1, N} ; L_{k i}^{N}=\{0,1\}
\end{aligned}
$$

for $i \in I_{k}^{E}$

$$
\begin{aligned}
\omega_{i j k}^{0} & =\left[-\bigvee_{c_{j}^{\xi}=1} E_{i}\left(\mathbf{x}^{\xi}\right)\right]+\delta_{j}^{0, E} \\
\omega_{i j k}^{1} & =\left[-\bigwedge_{c_{j}^{\xi}=1} E_{i}\left(\mathbf{x}^{\xi}\right)\right]+\delta_{j}^{1, E} ; L_{k i}^{E}=\{0,1\}
\end{aligned}
$$

[Compute weights for synaptic sites of first dendrite that determine $H^{n} \cap P^{n}$ enclosing training class $T_{j} ; k$ is the dendrite counter]
S3 $p_{k j}^{N}=p_{k j}^{E}=(-1)^{\operatorname{sgn}(k-1)}$
for $\xi=1$ to t

$$
\begin{aligned}
& \tau_{k j}^{N}\left(\mathbf{x}^{\xi}\right)=p_{k j}^{N} \bigwedge_{i \in I_{k}^{N}} \bigwedge_{\ell \in L_{k i}^{N}}(-1)^{1-\ell}\left(x_{i}^{\xi}+w_{i j k}^{\ell}\right) \\
& \tau_{k j}^{E}\left(\mathbf{x}^{\xi}\right)=p_{k j}^{E} \bigwedge_{i \in I_{k}^{E}} \bigwedge_{\ell \in L_{k i}^{E}}(-1)^{1-\ell}\left(E_{i}\left(\mathbf{x}^{\xi}\right)+\omega_{i j k}^{\ell}\right) \\
& \tau_{j k}\left(\mathbf{x}^{\xi}\right)=\tau_{k j}^{N}\left(\mathbf{x}^{\xi}\right) \wedge \tau_{k j}^{E}\left(\mathbf{x}^{\xi}\right) \\
& \tau_{j}\left(\mathbf{x}^{\xi}\right)=\bigwedge_{h=1}^{k} \tau_{h}^{j}\left(\mathbf{x}^{\xi}\right)
\end{aligned}
$$

[Using all training patterns, compute partial responses for each lattice metric and total response of current dendrite $d_{j k}$ of output neuron M_{j}; sgn is the signum function]
S4 for $\xi=1$ to t

$$
R_{k}=\left\{\mathbf{x}^{\xi} \in T: f\left(\tau^{j}\left(\mathbf{x}^{\xi}\right)\right)=1\right\}
$$

if $R_{k} \backslash T_{j}=\varnothing \quad$ [or, if $\left.f\left(\tau^{j}\left(\mathbf{x}^{\xi}\right)\right)=c_{j}^{\xi}, \forall \xi \in P\right]$ $K_{j}=k$ and return to S 1
else randomly choose $\mathbf{x}^{\gamma} \in R_{k} \backslash T_{j}$
[If training for M_{j} is successful (using the hard limiter f), then the final number of dendrites grown by neuron M_{j} is K_{j} and the training of neuron M_{j+1} can commence, else randomly select a misclassified pattern \mathbf{x}^{γ}]
S5 $k=k+1$
$I_{k}^{N}=I_{k}^{0, N}=I_{k}^{1, E}=\{1, \ldots, n\}$
$I_{k}^{E}=I_{k}^{0, E}=I_{k}^{1, E}=\left\{1, \ldots, 2^{n-1}\right\}$
for $i \in I_{k}^{N}, L_{k i}^{N}=\{0,1\}$
for $i \in I_{k}^{E}, L_{k i}^{E}=\{0,1\}$
[Add a new dendrite k to M_{j}; initialize its indexing sets]
S6 for $i \in I_{k}^{N}, p, q=0 ; s_{p}, t_{q}=0$
for $\mathbf{x}^{\xi} \in T_{j}$
if $x_{i}^{\xi}>x_{i}^{\gamma}$, then $p=p+1, s_{p}=\xi$, else continue
if $x_{i}^{\xi}<x_{i}^{\gamma}$, then $q=q+1, t_{q}=\xi$, else continue
if $p>0$

$$
d=\bigwedge_{\lambda=1}^{p} \mathrm{~d}_{\infty}\left(\mathbf{x}^{\gamma}, \mathbf{x}^{s_{\lambda}}\right) ; w_{i j k}^{0}=-\left(x_{i}^{\gamma}+\frac{1}{2} d\right)
$$

else $I_{k}^{0, N}=I_{k}^{0, N} \backslash\{i\} ; L_{k i}^{N}=L_{k i}^{N} \backslash\{0\}$
if $q>0$
$d=\bigwedge_{\lambda=1}^{q} \mathrm{~d}_{\infty}\left(\mathbf{x}^{\gamma}, \mathbf{x}^{s_{\lambda}}\right) ; w_{i j k}^{1}=-\left(x_{i}^{\gamma}-\frac{1}{2} d\right)$
else $I_{k}^{1, N}=I_{k}^{1, N} \backslash\{i\} ; L_{k i}^{N}=L_{k i}^{N} \backslash\{1\}$
$I_{k}^{N}=I_{k}^{0, N} \cup I_{k}^{1, N}$
[Cycle through input neurons of type N and assign L_{∞} metric weights to new synaptic sites that may classify \mathbf{x}^{γ} with the current dendrite $d_{j k}$ of output neuron M_{j}]
S 7 for $i \in I_{k}^{E}, p, q=0 ; s_{p}, t_{q}=0$
for $\mathbf{x}^{\xi} \in T_{j}$
if $E_{i}\left(\mathbf{x}^{\xi}\right)>E_{i}\left(\mathbf{x}^{\gamma}\right)$, then $p=p+1, s_{p}=\xi$ else continue
if $E_{i}\left(\mathbf{x}^{\xi}\right)<E_{i}\left(\mathbf{x}^{\gamma}\right)$, then $q=q+1, t_{q}=\xi$ else continue
if $p>0$
$d=\bigwedge_{\lambda=1}^{p} \mathrm{~d}_{1}\left(\mathbf{x}^{\gamma}, \mathbf{x}^{s_{\lambda}}\right) ; \omega_{i j k}^{0}=-\left(E_{i}\left(\mathbf{x}^{\gamma}\right)+\frac{1}{2} d\right)$
else $I_{k}^{0, E}=I_{k}^{0, E} \backslash\{i\} ; L_{k i}^{E}=L_{k i}^{E} \backslash\{0\}$
if $q>0$
$d=\bigwedge_{\lambda=1}^{q} \mathrm{~d}_{1}\left(\mathbf{x}^{\gamma}, \mathbf{x}^{s_{\lambda}}\right) ; \omega_{i j k}^{1}=-\left(E_{i}\left(\mathbf{x}^{\gamma}\right)-\frac{1}{2} d\right)$
else $I_{k}^{1, E}=I_{k}^{1, E} \backslash\{i\} ; L_{k i}^{E}=L_{k i}^{E} \backslash\{1\}$
$I_{k}^{E}=I_{k}^{0, E} \cup I_{k}^{1, E}$; loop back to S3
[Cycle through input neurons of type E and assign L_{1} metric weights to new synaptic sites that may classify \mathbf{x}^{γ} with the current dendrite $d_{j k}$ of output neuron M_{j}]

It is important to realize that the training algorithm can be modified to include a priory, probabilistic, or statistical knowledge derived from the data or training set under consideration. Thus, e.g., the parameters δ_{j}^{ℓ} associated to neurons of type N or E, are independent of the coordinate index i but could be generalized to $\delta_{i j}^{\ell}$ by including knowledge obtained from the spatial distribution of the i th coordinates x_{i}^{ξ} of the training data. Similarly, when dealing strictly with n-dimensional Boolean patterns, then choosing $\alpha_{j}>0$ (for the N 's or E 's) is not very helpful since all patterns under consideration are elements of the set $B^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n}: x_{i} \in\right.$ $\left.\mathbb{Z}_{2}, i=1, \ldots, n\right\}$. In this case setting $\alpha_{j}=0$ is, generally, the best choice. We remind that if the network output class matches the known class of a given test pattern a hit is obtained (correct classification), otherwise a misclassification error occurs. Hence, the proposed $L_{\infty} L_{1}$-SLLP recognition capability is measured by computing the fraction of hits relative to each input set used for testing.

Thus, given a data set, $X=\bigcup_{j=1}^{m} X_{j}$, a family of training subsets, denoted by $T_{j p}$, were generated by randomly selecting predefined percentages $p \%$ of the total number k_{j} of samples in X_{j} for $j=1, \ldots, m$. Specifically, p percentages where considered in the range $\{10 \%, 20 \%, \ldots, 90 \%\}$ and the corresponding test subsets are given by $T_{j p}^{c}=X_{j} \backslash T_{j p}$. Also, a finite number of runs were realized in order to compute the overall class average fraction of hits for each selected percentage of all samples. Thus, if $|X|=k=\sum_{j=1}^{m} k_{j}$, $\left|T_{p}\right|=\sum_{j=1}^{m} T_{j p},\left|T_{p}^{c}\right|=\sum_{j=1}^{m} T_{j p}^{c}$, represent the set cardinality of data, training, and test sets, respectively, τ is the number of runs, ρ_{r} is the number of correctly classified test patterns, and μ_{r} denotes the number of misclassified test patterns in each run, then the average fraction of hits is given by,

$$
\begin{equation*}
\bar{f}_{p}=1-\frac{\bar{\mu}}{k} ; \bar{\mu}=\frac{1}{\tau} \sum_{r=1}^{\tau} \mu_{r} ; \bar{\rho}=\frac{1}{\tau} \sum_{r=1}^{\tau} \rho_{r} \tag{13}
\end{equation*}
$$

and $k=\left|T_{p}\right|+\left|T_{p}^{c}\right|$. In (13), we set $\tau=20$ and use the same value for any p. Though T_{p} and T_{p}^{c} have the same number of elements for each run with the same value of p, the sample points belonging to each subset are different since they are randomly generated.

The results of our computer experiments for $L_{\infty} L_{1}$-SLLP learning and classification of patterns in the following example data sets are displayed in table format and $\alpha_{j}^{N}=\alpha_{j}^{E}=0.49$ for all j. The 1st column gives the percentage p of sample points used to build the training and test subsets, the 2 nd column provides the average number of correctly classified data patterns using the combined L_{∞} and L_{1} lattice metrics, the 3 rd column gives the average number of misclassified inputs, the 4th and following columns shows the average number of dendrites per class, \bar{K}_{j} for $j=1, \ldots, m$, as generated by the elimination algorithm, and the last column gives the average fraction of hits.

Example 3. Here, set X consists of 294 samples equidistributed in two classes C_{j} with $j=1,2$, and forming a
'Twins' shape in the plane whose features are the x and y coordinates. The corresponding two-dimensional point set is shown in Fig. 6 and Table I gives the numerical results.

Fig. 6. A discrete subset X of \mathbb{R}^{2}. Points belonging to class C_{1} are marked by a circle (०) and points of class C_{2} are marked with a disk (\bullet).

TABLE I
$L_{\infty}-L_{1}$ SLLP CLASSIFICATION PERFORMANCE FOR THE ‘TwINS' SET; 294 SAMPLES $(k), 2$ features $(n), 2$ CLASSES (m)

p	$\bar{\rho}$	$\bar{\mu}$	\bar{K}_{1}	\bar{K}_{2}	\bar{f}_{p}
10%	241	53	3	2	0.820
20%	263	31	9	6	0.895
$\star 22 \%$	294	0	21	21	1.000
30%	267	27	17	7	0.908
40%	278	16	18	11	0.945
50%	279	15	20	18	0.949
60%	283	11	14	25	0.963
70%	286	8	15	34	0.973
80%	288	6	34	32	0.980
90%	291	3	43	41	0.990

Note that the entry in Table I marked with a star (\star) corresponds to a training subset composed of 64 samples selected by border points delimiting each class, and our algorithm provides correct classification for any input test pattern. In this instance, the $L_{\infty} L_{1}$-SLLP shows the advantage of using problem-related knowledge before learning. Also, observe that the number of dendrites required is much less than those required for a training subset with 80% or 90% of the patterns (cf. last two rows of Table I).

Example 4. Here we use the 'Iris' data set [25]-[26] with 150 samples equally distributed in 3 classes corresponding, respectively, to the subspecies of Iris setosa $\left(C_{1}\right)$, Iris versicolor $\left(C_{2}\right)$, and Iris virginica (C_{3}). Each sample is described by four flower features: sepal length, sepal width, petal length, and petal width. Table II displays the classification results.

TABLE II
$L_{\infty}-L_{1}$ SLLP CLASSIFICATION PERFORMANCE FOR THE ‘IRIS’ SET; 150 SAMPLES $(k), 4$ FEATURES (n), 3 CLASSES (m)

p	$\bar{\rho}$	$\bar{\mu}$	\bar{K}_{1}	\bar{K}_{2}	\bar{K}_{2}	\bar{f}_{p}
10%	92	58	1	1	1	0.613
20%	126	24	1	2	1	0.840
30%	134	16	1	1	2	0.893
$\star 38 \%$	150	0	1	7	10	1.000
40%	134	16	1	3	2	0.893
50%	140	10	1	3	3	0.933
60%	143	7	1	5	6	0.953
70%	145	5	1	6	5	0.960
80%	147	3	1	6	7	0.980
90%	148	2	1	6	12	0.987

Note that for the data sets 'Twins' and 'Iris', a high average fraction of hits such as $\bar{f}_{p}>0.95$ is obtained for percentages p as low as 60%. Furthermore, the entry in Table II marked with a star (\star) corresponds to a training subset composed of 57 samples selected from an ascending lexicographic ordering within each class, and our algorithm provides correct classification for any input test pattern. Notice, in particular, that the number of dendrites required is practically the same as if 90% of the patterns were used for training (see last row in Table II). Hence, in this case the $L_{\infty} L_{1}$-SLLP used as an individual classifier delivers better performance, e.g., against Linear or Quadratic Bayesian classifiers [27] for which, $\bar{f}_{50}=0.953$ and $\bar{f}_{50}=0.973$ (with $\tau=2$), respectively, or in comparison with an Edge-effect Fuzzy Support Vector Machine [28] whose $\bar{f}_{60}=0.978$ (here, τ is not specified explicitly).

V. Conclusions

This paper introduces an extended training algorithm for neural networks endowed with dendrites based on the lattice metrics L_{∞} and L_{1}. The mathematical background, the $L_{\infty} L_{1}$-SLLP model description, and the mathematical pseudo-code of the proposed learning by elimination algorithm is given together with illustrative non-linear examples that demonstrates its performance capabilities under random sampling or problem-related knowledge. Future work contemplates algorithm optimization by pruning redundant neuron to dendrite connections, additional computer experiments using higher-dimensional problems in pattern classification, and performance comparisons with other current techniques in the field of machine learning.

References

[1] G. Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, Vol. 25, Providence, RI, 1940.
[2] G.X. Ritter and P. Gader, "Fixed Points of Lattice Transforms and Lattice Associative Memories," in P. Hawkes (Ed.), Adv. in Imaging \& Electron Physics, Elsevier, San Diego, CA, Vol. 144, 165-242, 2006.
[3] V. Petridis and V.G. Kaburlasos, "Fuzzy lattice neural network (FLNN): a hybrid model for learning," IEEE Transactions on Neural Networks, 9, 877-890, 1998.
[4] M.A. Khabou, P.D. Gader, and J.M. Keller, "LADAR target detection using morphological shared-weight neural networks," Machine Vision and Applications, 11(6) 300-305, 2000.
[5] L.F.C. Pessoa and P. Maragos, "Neural networks with hybrid morphological/rank/linear nodes: a unifying framework with applications to handwritten character recognition," Pattern Recognition, 33(6), 945960, 2000.
[6] P. Maragos, "Lattice image processing: A unification of morphological and fuzzy algebraic systems," Journal of Mathematical Imaging and Vision, 22(2-3), 333-353, 2005.
[7] G.X. Ritter, G. Urcid, and L. Iancu, "Reconstruction of Noisy Patterns Using Morphological Associative Memories," Journal of Mathematical Imaging and Vision, 19(2), 95-111, 2003.
[8] V.G. Kaburlasos, "Improved Fuzzy Lattice Neurocomputing (FLN) for Semantic Neural Computing," IEEE Proceedings of IJCNN, Portland, OR, 1850-1855, 2003.
[9] M. Grana, I. Villaverde, J.O. Maldonado, and C. Hernandez, "Two lattice approaches for unsupervised segmentation of hyperspectral images," Neurocomputing, 72(10-12), 2111-2120, 2009.
[10] G.X. Ritter, L. Iancu, and G. Urcid, "Morphological perceptrons with dendritic structure," IEEE Proceedings of FUZZ'03, St. Louis, MO, 1296-1301, 2003.
[11] G.X. Ritter and G. Urcid, "Lattice algebra approach to single-neuron computation," IEEE Transactions on Neural Networks, 14(2), 282-295, 2003.
[12] G. Urcid, G.X. Ritter, and L. Iancu, "Single layer morphological perceptron solution to N-bit parity problem," in LNCS, Vol. 3287, Springer, Berlin-Heidelberg, 163-170, 2004.
[13] L. Iancu, Lattice Algebra Approach to Neural Computation, Ph.D. Thesis, University of Florida, Gainesville, FL, 2005.
[14] G.X. Ritter and G. Urcid, "Learning in Lattice Neural Networks that Employ Dendritic Computing," in Computational Intelligence based on Lattice Theory, Vol. 67, V.G. Kaburlasos, G.X. Ritter (Eds.), Springer, Berlin, 25-44, 2007.
[15] V.G. Kaburlasos and G.X. Ritter (Eds.), Computational Intelligence Based on Lattice Theory, Vol. 67. Springer, Berlin, 2007.
[16] H. Sossa, and E. Guevara, "Efficient training for dendrite morphological neural networks," Neurocomputing, 131, 132-142, 2013.
[17] C. Koch and I. Segev (Eds.), Methods in Neuronal Modeling: From Synapses to Networks, MIT Press, Boston, 1989.
[18] W.R. Holmes and W. Rall, "Electronic Models of Neuron Dendrites and Single Neuron Computation," in Single Neuron Computation, T. McKenna, J. Davis, and F. Zornetzer (Eds.), Academic Press, New York, 7-25, 1992.
[19] G.M. Shepherd, "Canonical Neurons and their Computational Organization," in Single Neuron Computation, T. McKenna, J. Davis, and F. Zornetzer (Eds.), Academic Press, New York, 27-55, 1992.
[20] B.W. Mel, "Synaptic Integration in Excitable Dendritic Trees," Journal of Neurophysiology, 70, 1086-1101, 1993.
[21] I. Segev, "Dendritic Processing," in The Handbook of Brain Theory and Neural Networks, M. Arbib (Ed.), MIT Press, Boston, 282-289, 1998.
[22] B.W. Mel,"Why have Dendrites? A Computational Perspective," in Dendrites, G. Stuart, N. Spruston, and M.D. Hausser (Eds.), Oxford University Press, 271-280, 1999.
[23] R. Setiono, "A Neural Network Construction Algorithm which maximizes the Likelihood Function," Connectionist Science, 7, 147-166, 1995.
[24] R. Setiono, "Algorithm Techniques and their Applications," in C.T. Leondes (Ed.), Neural Network Systems Techniques and Applications, Vol. 5, Academic Press, San Diego, CA., 297-303, 1998.
[25] J.C. Bezdek, J. Keller, R. Krisnapuram, N.R. Pal, "Cluster Analysis for Object Data," in J.C. Bezdek, et al. (Eds.), Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academic, Dordrecht, The Netherlands, 87-121, 1999.
[26] A. Frank and A. Asuncion, UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. University of California, School of Information \& Computer Science, Irvine, CA., 2010.
[27] K. Woods, "Combination of multiple classifiers using local accuracy estimates," IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4), 405-410, 1997.
[28] C-F. Li, L. Xu, and S-T. Wang, "A comparative study on improved fuzzy support vector machines and Levenberg-Marquardt based BP network," Intelligent Computing, Springer LNCS, Vol. 4113, 73-82, Berlin, 2006.

