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Abstract. We present a detailed analysis of the reconstruction of gray-
level images using orthogonal moments with respect to the basis sets of
Zernike, Fourier-Mellin, Chebyshev-Fourier, and pseudo-Jacobi-Fourier
polynomials. As test images, we use Ronchigrams with different num-
bers of fringes as high-spatial-frequency components. The evaluation of
image reconstruction between orthogonal moment sets is made in terms
of different metrics. These measurements are the normalized image re-
construction error, the overall activity level in each image with respect to
spatial frequency variations, the root-mean-square contrast, the total
number of reconstructed fringes, the coordinate transformations of the
input image, and the number of moment orders. Moreover, a method of
denoising the input image based on the Daubechies wavelet transform is
implemented to compute the signal-to-noise ratio. Numerical computa-
tions show that, for the Ronchigram reconstructions, the performance of
Zernike moments is better than that of the other basis sets of orthogonal
moments.
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1 Introduction

Moments have played an important role in pattern recogni-
tion, image analysis, and machine vision applications in the
last years.1–4 In 1961, Hu5 used geometric moments to gen-
erate a set of invariants; however, the recovery of the image
from these kinds of moments has been found to be quite
difficult, since they do not have the orthogonality property.
Two decades after Hu, in 1980, Teague6 proposed Zernike
moments derived from the basis set of orthogonal Zernike
polynomials. Zernike moments have been shown to be
rotation-invariant and robust to noise. Also, a relatively
small set of Zernike moments can characterize effectively
the global shape of a pattern.

Other orthogonal moments are derived from the
Legendre, Chebyshev, orthogonal Fourier-Mellin,7

Chebyshev-Fourier,8 and pseudo-Zernike polynomials.9 In
general, low-order moments represent the global shape of
an image, and high-order moments the detail. Specifically,
image reconstruction using orthogonal Fourier-Mellin mo-
ments �OFMMs� and Chebyshev-Fourier moments
�CHFMs� have shown almost the same results and are su-
perior to other moment sets in describing binary images.8

Recently, a new set of orthogonal moments has been pro-
posed, based on the pseudo-Jacobi-Fourier10 polynomials.
As stated by Amu et al.10 the pseudo-Jacobi radial polyno-
mials of order n have almost n+2 uniformly distributed
t0091-3286/2007/$25.00 © 2007 SPIE
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eros within the radial distance interval 0�r�1. This
eans that these moments can describe with very good

ccuracy the high-spatial-frequency components, as has re-
ently been proven using practical binary images.10 How-
ver, for the case of images in grayscale with some kind of
imple geometric structure, such as interferograms or
onchigrams,11 high- and low-spatial-frequency compo-
ents correspond, respectively, to sharp and smooth transi-
ions of gray-level intensities. These intensity transitions
an be difficult to retrieve by means of certain kinds of
oments.
In the recent literature there have been analyzed several

rthogonal moment sets for the reconstruction of binary
bjects, such as ideograms, characters, and digits, that are
ommonly used as test images in the pattern recognition
reas. A lot of the image image analysis has been done with
his kind of objects. In this paper we analyze the recon-
truction performance of four of the most important sets of
ircular complex orthogonal moments, using as test images
onchigrams in gray level, which have a simple geometric

tructure. This study can be extended to other kinds of
cenes also useful in computer vision: interference patterns,
iffraction distributions, phase objects, interferograms, etc.
he common characteristics of all these scenes are that they
resent homogeneous regions in gray level with different
ontrasts against a dark background. From the point of
iew of the numerical effort, binary and grayscale images
equire different numbers of moments for their reconstruc-

ion: a few low orders are usually enough for the retrieval
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Padilla-Vivanco et al.: Comparative analysis of pattern reconstruction…
of binary images, whereas high-order moments play a more
important role in the reconstruction of gray-level images.
Particularly, in Ronchigram analysis the detail of fringes is
important to evaluate transverse optical aberrations; a
change of spatial frequency is commonly used to increase
the accuracy of evaluation.

On the other hand, inside the unit circle there exists an
infinite number of orthogonal sets of polynomials; this fact
was shown by Bathia and Wolf.12 Similar to the OFMM,7

the CHFM and the pseudo-Jacobi-Fourier moment �PJFM�
correspond to a single set of orthogonal radial polynomials
for all circular harmonic orders, contrary to the Zernike
moments, which correspond to several orthogonal radial
polynomials, one for every harmonic order. In this work,
we compare the image reconstruction performance using
the Zernike, Fourier-Mellin, Chebyshev-Fourier, and
pseudo-Jacobi-Fourier moments. We show that the Zernike
moments give the best performance for the retrieval of
grayscale images with the kind of geometric structure illus-
trated in the Ronchigrams used in this research as test im-
ages. We compute the orthogonal moments of Ronchigrams
by means of two transformations in the image coordinate
plane: the first when the image is mapped inside the unit
circle, and the second when it is mapped outside.13,14

It is well known that experimental images suffer from
noise, which is inevitably taken up by the acquisition sys-
tem. This problem affects the image reconstruction mainly
in the higher orders, so that as a partial solution, the denois-
ing of the input image is implemented. Here a simple solu-
tion for removing noise is offered by wavelet transforma-
tion of the input image and followed by application of a
coefficient elimination rule. Alternatively, other noise re-
moval methods like the median or Gaussian filter can be
used,15–17 but the wavelet transformation is particularly ef-
fective and easy to use in this context. Additionally, it is a
common task to handle additive noise when the images are
acquired under incoherent illumination. In the case of co-

Table 1 Radial polynomials: Zernike Rnl�r�, Mellin Qn�r�, shifted Che
factors.

Radial
polynomial Radial series expansion

Zernike
Rnl�r�,

n− �l� even,
�n�� l

�s=0
n−�l�/2

�−1�s�n−s�!

s!�n+ �l�
2

−s�!�n− �l�
2

−s�!
rn−2s

Mellin
Qn�r� �s=0

n
�−1�n+s�n+s+1�!

�n−s�!s!�s+1�!
rs

Chebyshev
Cn�r� �1− r

r �1/4

�s=0
�n+2/2� �−1�s�n−s�!

s!�n−2s�!
�2�2r−1��n−2

Pseudo-
Jacobi
Jn�r�

�−1�n� 2n+4
�n+3��n+1�

�1− r�r�1/2

�s=0
n

�−1�s�n+s+

�n−s�!s!�s+
herent optical imaging, multiplicative noise like speckle ap- t

Optical Engineering 017002-2
ears very frequently. In this research the test images have
een acquired with a white light source as illuminator. As a
onsequence, additive noise is assumed in the denoising
rocess of images.

The applications of the pattern reconstruction have al-
eady been implemented for deblurring and enhancement of
oint spread functions �PSFs�. Visual improvement by de-
lurring the PSF using Zernike moments and its reconstruc-
ion has been shown in 3-D images of confocal
icroscopes.18

Other possible choices of polynomial bases to recon-
truct images are the scaled Chebyshev and Krawtchouk
oments.19,20 These kinds of polynomials have the advan-

age that no discrete approximation is required in their nu-
erical implementation, and also they are suitable for data

tored in rectangular pixel grids as images. However, the
eature descriptors that are invariant with respect to rota-
ions in the image plane have to be found using radial-polar
oments, such as Zernike moments. Additionally, Cheby-

hev and Krawtchouk moments are not defined with respect
o basis functions of two variables; in some applications
uch a representation is a disadvantage, as in the character-
zation and evaluation of visual information that is pre-
ented in an optical system. Whereas only the low orders of
ernike moments offer a representation of the aberrations
f the optical systems, these orders are needed in applica-
ions such as adaptive optics or 3-D fluorescence
icroscopy.21

Our exposition is organized as follows: in Sec. 2 is pre-
ented a general review of the orthogonal moments of an
mage, based on complex circular polynomials. This review
ncludes orthogonality properties of the polynomial sets
sed. In Sec. 3, the discrete version of the moments and the
econstruction of Ronchigrams with different numbers of
ringes are presented. The grayscale image reconstructions
re evaluated with the normalized image reconstruction er-
or �NIRE�. Other image quality metrics used to measure

v Cn�r�, and pseudo-Jacobi Jn�r�. Here �n and �n are normalization

Orthogonality �n �n

�0
1Rnl�r�Rml�r�r dr=�n�mn 1

2�n+1�
n+1

�

�0
1Qn�r�Qk�r�r dr=�n�nk 1

2�n+1�
n+1

�

�0
1Cn�r�Ck�r�r dr=�n�nk �

8
8
�

�0
1Jn�r�Jk�r�r dr=�n�nk 1 1

2�
byshe

s

3�!

2�!
rs
he results are also described. Section 4 presents a brief
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Padilla-Vivanco et al.: Comparative analysis of pattern reconstruction…
review of the geometric moments needed to compute the
digital radius of an object with circular symmetry. A noise
removal method by means of wavelet transforms is pre-
sented in Sec. 5. The objective is to reduce the NIRE by
means of noise filtering of the input image. Finally, in Sec.
6, the conclusions of our research are presented.

2 Review of Orthogonal Moments

As we pointed out in the Introduction, there are an infinite
number of complete polynomial sets that are orthogonal
inside the unit circle. These polynomial sets provide
rotation-invariant moments of a function. A general expres-
sion for the orthogonal moments Anl of order n and repeti-
tion l for a given function f�r ,�� in polar coordinates is

Anl = �n�
0

2� �
0

1

f�r,��pnl
* �r,��r dr d� , �1�

where �n is a normalization factor, and the complex func-

Fig. 1 Radial polynomials. �a� For the order n=10, C10�r�, Q10�r�,
and J10�r� are already confined to the interval �−10,30�. �b� Zernike
polynomials of all orders are confined to the interval �−1,1�.
tions given by

Optical Engineering 017002-3
nl�r,�� = 	Rnl�r�
gn�r� 
eil� �2�

ave radial polynomials Rnl�r� or gn�r� in r of degree n. The
ntegers n�0 and l=0, ±1, ±2, ±3, . . . are, respectively,
he radial and the harmonic orders. If the difference n− �l� is
n even number for �l��n, the radial Zernike polynomials
nl�r� are used in Eq. �2�. Otherwise—if no restriction ex-

sts for orders n and l—the polynomials gn�r� are used.
ere, the functions gn�r� represent the orthogonal Mellin

Qn�r��, shifted Chebyshev �Cn�r��, or pseudo-Jacobi
Jn�r�� radial polynomials. The series expansions and the
rthogonality properties of the radial polynomial sets are
iven in Table 1.

In general, the zeros of the radial polynomials gn�r� of
ll orders are uniformly distributed over their domain, 0
r�1. It is not hard to verify that for high orders and

lose to r=0, the gn�r� have values much greater than the
olynomials Rnl�r�, as shown in the curves of Fig. 1. On the
ontrary, the values of gn�r� for Rnl�r� close to zero and far
way from it are bounded by ±1, even at high orders. Also,

able 2 In the Zernike expansion mZ=0,2,4,6, . . . produce respec-
ively 1,6,15,28,… terms. With the others sets, mg=0,1,2,3, . . . pro-
uce the same number of terms 1,6,15,28,…. So mZ=2mg.

Order
n= l=m

Number of real expansion terms

Zernike

Mellin-Fourier,
Chebyshev-Fourier,

pseudo-Jacobi-Fourier

0 1 1

1 3 6

2 6 15

3 10 28

4 15 45

5 21 66

6 28 91

able 3 When mZ=4, the numbers of complex and real moments
re respectively 9 and 15. But if mg=4, we obtain 25 complex and
5 real moments.

Polynomials
with n= l=m

Number of
complex

moments,
�

Number of
real

moments,
	

Zernike
�i=0

mZ�� i
2

�+1� �mZ+1��mZ+2�

2

Fourier-Mellin,
Chebyshev-Fourier,

pseudo-Jacobi-Fourier

�mg+1�2 2mg
2+3mg+1
January 2007/Vol. 46�1�
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as seen in Fig. 1�b�, the zeros in the Zernike radial polyno-
mials with high orders are uniformly distributed like the
zeros of the polynomials gn�r�. We remark that the retrieval
of gray-level intensity distributions requires the computa-
tion of several high-order polynomials. Therefore, high val-
ues close to the center of an image produce high intensity
levels that in binary images are imperceptible, but in gray-
level images can be seen as a reconstruction artifact.

The reconstructed function f̂�r ,�� can be computed us-
ing the infinite series

f̂�r,�� = �
n=0




�
l=−





Anlpnl�r,�� . �3�

If l�0 and l�0, then Eq. �3� takes the form

f̂�r,�� = �
n=0




�
−


l�0

Anlpnl�r,�� + �
n=0




�
l�0




Anlpnl�r,��

= �
n=0




�
l�0




An,−lpn,−l�r,�� + �
n=0




�
l�0




Anlpnl�r,��

= �
n=0




�
l�0




Anl
* pnl

* �r,�� + �
n=0




�
l�0




Anlpnl�r,��

= �
n=0




�
l�0




Anl
* pnl

* �r,�� + �
n=0




�
l�0




Anlpnl�r,��

+ �
n=0




An0	Rn0�r�
gn�r� 
 , �4�

where Anl
* pnl

* �r ,��=An,−lpn,−l�r ,��. However, we can limit
the number of terms in the series expansion to n
=0,1 ,2 , . . . ,m and l=0,1 ,2 , . . . ,m. Here, both the radial
and harmonic order maxima are denoted by m. It is easily

Table 4 The polynomials gn�r�el� in Euler form with real and imagi-
nary parts for the orders n= l=0, . . . ,3. When mg=3, one has �
=16 and 	=28.

n

gn�r�el�

l=0 l=1 l=2 l=mg=3

0 g0 g0 cos � g0 cos 2� g0 cos 3�

g0 sin � g0 sin 2� g0 sin 3�

1 g1 g1 cos � g1 cos 2� g1 cos 3�

g1 sin � g1 sin 2� g1 sin 3�

2 g2 g2 cos � g2 cos 2� g2 cos 3�

g2 sin � g2 sin 2� g2 sin 3�

mg=3 g3 g3 cos � g3 cos 2� g3 cos 3�

g3 sin � g3 sin 2� g3 sin 3�
verified that Eq. �4� can be written as

Optical Engineering 017002-4
ig. 2 Ronchigrams of a parabolic mirror as input images, grid reso-
ution 8 lines/ in., radius of curvature 2.0 m, and diameter 30.5 cm:
a� 5, �b� 7, and �c� 12 fringes.
January 2007/Vol. 46�1�



ˆ

w
=
i

�

Padilla-Vivanco et al.: Comparative analysis of pattern reconstruction…

Optical Engineering 017002-5
f�r,�� = 2�
n=0

m

�
l�0

m

�Re Anl cos l� − Im Anl sin l��	Rnl�r�
gn�r� 


+ �
n=0

m

�Re An0 + i Im An0�	Rn0�r�
gn�r� 
 , �5�

here the Euler formula eil�=cos l�+ i sin l� and Anl
ReAnl+ i ImAnl have been used. The real series expansion

s given by

f̂�r,��� = 2�
n=0

m

�
l�0

m

�Re Anl cos l� − Im Anl sin l��	Rnl�r�
gn�r� 


+ �
n=0

m

��Re An0�2 + �Im An0�2�1/2	Rn0�r�
gn�r� 
 . �6�

We have to take into account that there are significant

all possible alternatives. Before reconstruction
4 px. The reconstructed image contrast using
i-Fourier moments is much lower than using
20�, 15 �30�, and 20 �40�.
Table 5 Reconstruction of the image of Fig. 2�a� with
was performed, the input image was resized to 545
Fourier-Mellin, Chebyshev-Fourier, and pseudo-Jacob
Zernike moments. The reconstructions orders are 10 �
Fig. 3 Coordinate transformations of an image to the unit circle: �a�
outside, c=d=1; �b� inside, c=d=�2, d=�1/2.
January 2007/Vol. 46�1�
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Padilla-Vivanco et al.: Comparative analysis of pattern reconstruction…
differences in the numbers of terms obtained in the series of
Eq. �6�, using the same number m for the polynomials
Rnl�r� and gn�r�. This fact is due to the constraints imposed
on n and l in the Zernike polynomial definition, so that a
given value of m produces more terms in the series for
gn�r� than for Rnl�r�, as shown in Table 2. The number � of
complex moments Anl in Eq. �3� and the total number 	 of
polynomials sin l�, cos l�, and Rn0�r� used in Eq. �6� can be
computed with the formulas provided in Table 3. The for-
mulas for Zernike polynomials have been published in Ref.
11 and 22. In the case of Fourier-Mellin, Chebyshev-
Fourier, and pseudo-Jacobi-Fourier polynomials, similar
formulas can be obtained using Table 4.

3 Reconstruction of Grayscale Images
In optical workshops a common test used to determine the

11

Table 6 The contrast is achieved better in some
computed, we compressed the dynamic range w
sity distributions. Only the reconstructed ima
transformed.
quality of optical surfaces is the Ronchi test. During the M

Optical Engineering 017002-6
olishing process, the surface quality is continuously veri-
ed, and the interferometric verification procedure requires

mages of the surface under testing; these images are cur-
ently known as Ronchigrams. Here, we used three Ronchi-
rams and their grayscale images to evaluate the recon-
truction capabilities of the orthogonal moments described
n the previous section. The Ronchigrams used for this
ork are shown in Fig. 2. These images have different

patial frequency, and finding their center is an important
tep; a bad reconstruction of these fringes in the pattern
ould decrease the accuracy of the test.

.1 Discrete Orthogonal Moments of an Image
and Its Reconstruction

et f�rij ,�ij� be a digital image with spatial dimensions

reconstructed images. Afterward �f̂�2 or �f̂� was
usual log transformation to visualize the inten-
ing the Zernike moments has not been so
of the
ith the

ges us
N. Its discrete moments Anl are given by

January 2007/Vol. 46�1�
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Padilla-Vivanco et al.: Comparative analysis of pattern reconstruction…
Anl = �n �
i=0

M−1

�
j=0

N−1

f�rij,�ij�	Rnl�rij�
gn�rij�


exp�il�ij� , �7�

where the discrete polar coordinates

rij = �xj
2 + yi

2�1/2, �ij = arctan� yi

xj
 �8�

are transformed by

xj = c +
j�d − c�
N − 1

, yi = d −
i�d − c�
M − 1

. �9�

Here, the index variables, i=0, . . .,M −1 and j=0, . . .,N−1
represent the rows and columns of the image data matrix.

Fig. 4 NIRE of the Ronchigram with five fringes, using all moment
sets. The input image has been previously mapped inside the unit
circle. For the Zernike moments the order is 2n, and the recon-

structed distributions were obtained with �a� �f̂� and �b� �f̂�2.
The real numbers c and d take different values according as s

Optical Engineering 017002-7
he image function is mapped outside or inside the unit
ircle, as shown in Fig. 3. As in the continuous case, the
adial and harmonic orders are respectively n
0,1 ,2 , . . . ,m and l=0,1 ,2 , . . . ,m.

The reconstructed complex discrete distribution of the
mage is given by

f�rij,�ij� = �
n=0

m

�
l=0

m

Anl	Rnl�rij�
gn�rij�


exp�il�ij� , �10�

ts amplitude distribution is obtained from � f̂ �, and its inten-
ˆ 2

ig. 5 NIRE of the Ronchigram with five fringes, using all moment
ets. The input image has been previously mapped outside the unit
ircle. For the Zernike moments the order is 2n, and the recon-

tructed distributions were obtained with �a� �f̂� and �b� �f̂�2.
ity distribution from �f � .

January 2007/Vol. 46�1�
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Padilla-Vivanco et al.: Comparative analysis of pattern reconstruction…
3.2 Image Quality Metrics
In this subsection we review some basic metrics of image
quality for use in comparing the images under study. The
first one is the normalized image reconstruction error
�NIRE� between an input image f�i , j� and its reconstruc-

tion f̂�i , j�.7,8 It is defined by the following equation for two
images of spatial dimensions M N:

Table 7 Spatial frequency Sfreq as a measurement of the contrast.

Fig. 6 Intensity profiles along row 27 of the reconstructed images
with order n= l=15 �30�, using all moment sets. The input image size
is 5454 px, and its rms contrast is 0.256. For Zernike, Fourier-
Mellin, Chebyshev-Fourier, and pseudo-Jacobi-Fourier polynomials,
the rms contrasts are respectively 0.274, 0.326, 0.348, and 0.315.
Optical Engineering 017002-8
IRE =

�
i=0

M−1

�
j=0

N−1

�f�i, j� − f̂�i, j��2

�
i=0

M−1

�
j=0

N−1

f̂2�i, j�

. �11�

able 8 Reconstructions of the input image of Fig. 2�b� for or-
ers 12 to 15. Before the reconstructions were performed, the

nput image was resized to 110110 px. Again for OFMM,
HFM, and PJFM, the log transformation has been used to vi-

ualize the intensity distributions �f̂�2. Only the Zernike moments
an retrieve all the fringes in the image with good contrast.

ig. 7 NIRE of the Ronchigram with seven fringes, using all mo-
ent sets. The input image has been mapped outside the unit circle.

he reconstructed intensity distributions were obtained with �f̂�2. For
he Zernike moments the order is 2n and the optimum reconstruc-
ion interval with the minimum NIRE for all sets is. �Refs. 12 and 15�
January 2007/Vol. 46�1�



¯

h

S

w
f

R

a

C

T
t
2

t
t
g
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Usually, digitally captured images are corrupted by
noise produced by the image acquisition system, and a way
to estimate the amount of noise in the acquired image,
fnoisy�i , j�, is by computing its histogram to determine the
values of the mean � as well as the variance �2 of the
grayscale image.23 These statistical quantities are defined as
follows:

� = �
i=0

M−1

�
j=0

N−1

fnoisy�i, j�hN�fnoisy�i, j�� �12�

and

�2 = �
i=0

M−1

�
j=0

N−1

�fnoisy�i, j� − ��2hN�fnoisy�i, j�� , �13�

where hN�fnoisy�i , j��=h�fnoisy�i , j�� /MN are the normalized
histogram values.

Also, the image contrast can be used to compare two
different grayscale images; a common technique is to use
the root mean square �rms� contrast.24,25 If the rms contrast
is the same in both grayscale images, then they have the
same contrast. It is defined as

RMS = � 1

MN
�
i=0

M−1

�
j=0

N−1

�fN�i, j� − f̄N�i, j��2�1/2

, �14�

where fN�i , j�= f�i , j� /255 denotes the normalized gray-

scale image f�i , j�, and f̄N�i , j� represents the mean normal-
ized grayscale image given by

fN�i, j� =
1

MN
�
M−1

�
N−1

fN�i, j� . �15�

Fig. 8 Intensity profiles along row 55 of the reconstructed images
with order n= l=15 �30�, using all moment sets. The input image size
now is 110110 px, and its rms contrast is 0.201. For Zernike,
Fourier-Mellin, Chebyshev-Fourier, and pseudo-Jacobi-Fourier ply-
nomials, the rms contrasts are respectively 0.197, 0.179, 0.181, and
0.179. Only the curve of the Zernike reconstruction follows the pro-
file of the input image.
i=0 j=0

Optical Engineering 017002-9
Contrast can also be based on spatial frequency;26,27

ence, as a measure of overall activity in a grayscale image
f�i , j�, it is defined by

freq = �Rfreq
2 + Cfreq

2 �1/2, �16�

here Rfreq and Cfreq are, respectively, the row and column
requencies of the image, which are computed by

freq = � 1

MN
�
i=0

M−1

�
j=0

N−1

�f�i, j� − f�i, j − 1��21/2

�17�

nd

freq = � 1

MN
�
M−1

�
N−1

�f�i, j� − f�i − 1, j��21/2

. �18�

able 9 Reconstructions of the input image of Fig. 2�c� using all
he moment sets for order n= l=40. The size of the input image is
20220 px. For OFMM, CHFM, and PJFM the log transforma-

ion has been used to visualize the intensity distributions �f̂�2. Only
he Zernike moments can retrieve all the fringes in the image with
ood contrast.
i=0 j=0

January 2007/Vol. 46�1�
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3.3 Digital Reconstruction

In the present subsection, we display the reconstructions of
the Ronchigram images using the moment sets described in
Sec. 2. Before the reconstructions are performed, the two
coordinate transformations proposed in Sec. 3.1 are applied
to the input images of Fig. 2. The first transformation is
made by setting c=−1 and d= +1 in Eq. �9�; therefore the
image is mapped outside the unit circle. For the second
mapping, the values c and d are, respectively, −1/�2 and
+1/�2, and consequently the input image is now trans-
formed inside the unit circle.

According to the analysis provided in Sec. 2, we show in
Table 5 the reconstructed images of Fig. 2�a�, using the
orders n= l=20,30,40 for the Zernike moments and n= l
=10,15,20 for the OFM, CHF, and PJF moments. Also in
Table 5, the intensity and amplitude distributions of the
reconstructed images are displayed, using respectively the

square � f̂ �2 and the modulus � f̂ � of the complex recon-

structed distribution f̂ . In all cases of reconstruction per-
formed by OFMM, CHFM, and PJFM, the resulting image
contrast is low. Thus, each grayscale image has been pro-
cessed with a log transformation to compress its dynamic
range within the same data matrix in order to improve its
contrast, as illustrated in Table 6. It is clear that image
contrast is enhanced in comparison with the nontrans-
formed images shown in Table 5. In Table 6, it can be
observed that reconstruction results closer to the input im-

age are obtained using � f̂ �2, for orders between 15 �30� and
20 �40�, where the second number within parentheses is the
order of the Zernike moments and the first number is the
order for the other moment sets.

The NIREs are graphed in Figs. 4 and 5 using the orders
n= l=16,18,20, . . . ,40 for the Zernike moments and n= l

Fig. 9 NIRE of the Ronchigram with 12 fringes, using all moment
sets. The input image has been mapped outside the unit circle. The

reconstructed intensity distributions were obtained with �f̂�2. For the
Zernike moments, the order is 2n. The minimum NIREs for all sets
are presented up to the 40th order, and only the Zernike moments
are able to retrieve all fringes.
=8,9 ,10, . . . ,20 for the OFM, CHF, and PJF moments. u
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Another interesting comparison can be made by consid-
ring the contrast of the reconstructed fringes. The central
ntensity profiles of the input and the reconstructed images

f Table 6 for orders n= l=15 �30�, using � f̂ �2 and the out-
ide coordinate transformation, are shown in Fig. 6. As a
econd contrast measure, we have used Eqs. �16�–�18�;
hese are shown in Table 7.

In the second case of reconstruction, the Ronchigram
as seven fringes as shown in the input image of Fig. 2�b�.
he NIREs obtained for all moment sets are graphed in Fig.
, from which it is not hard to verify that the best recon-
tructed images are in the interval 24 to 30 for Zernike
olynomials and 12 to 15 for OFMM, CHFM, and PJFM.
o show the advantage of using the Zernike moments in
onchigram reconstruction, the reconstructed images with

he lowest NIREs are shown in Table 8. Our results have
een obtained using the squared intensity distributions, the
utside mapping, and the log transformation for the poly-
omials gn�r�. As in the first example, the central intensity
rofiles are graphed for the input and the reconstructed im-
ges using the orders n= l=15 �30�, as shown in Fig. 8. The
ow spatial frequency Rfreq of the input image was com-
uted; its value is 20.992. For the reconstructed images the
freq values are, respectively, 14.021, 9.073, 9.408, and
.011 for Zernike, OFMM, CHFM, and PJFM.

Some intensity distributions of the third reconstructed
mage with the orthogonal moments are shown in Table 9.
t is an interesting case in that the input image has 12
ringes and only the Zernike moments are able to recon-
truct all of them. The graphs of the NIRE and their inten-
ity central profiles are shown, respectively, in Figs. 9 and
0. The orders n= l=2,4 ,6 , . . . ,46 for the Zernike mo-
ents and n= l=1,2 ,3 , . . . ,23 for the other sets have been

ig. 10 Intensity profiles along row 110 of the reconstructed images
ith order n= l=20 �40� using all moment sets. The size of the input

mage is 220220 px, and its rms contrast is 0.06. For Zernike,
ourier-Mellin, Chebyshev-Fourier, and pseudo-Jacobi-Fourier poly-
omials, the contrasts are respectively 0.088, 0.433, 0.502, and
.433. Only the curve of the Zernike reconstruction follows the pro-
le of the input image.
sed. As in the previous cases, Rfreq is also computed. For

January 2007/Vol. 46�1�0
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Fig. 11 �a� Binary image of the Ronchigram with five fringes thresh-
olded with a value of 19. �b� Circle with 98 px as radius, obtained
with geometric moments. �c� Circle around the original Ronchigram

as the first zone to be filtered.

Optical Engineering 017002-1
ig. 12 �a� Multiresolution analysis of the Ronchigram with five
ringes using the first level of the Daubechies wavelet transform with
ernel Daub�4�. �b� Filtering of the image transform using the elimi-
ation rule. �c� Inverse wavelet transform to obtain the reference

mage f �i , j�.
January 2007/Vol. 46�1�1



r

w
a
s
u
fi

5

N
t
t
v
r
d
t
i
s
c
R
i
i
g
i
p
i
o
f
c

5

T
u
f
i
i
w
u
t

s
w

r
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the input image, the value is 19.081; for the Zernike, OFM,
CHF, and PJF the values obtained are, respectively, 14.01,
9.26, 10.34, and 9.16.

All input test images presented here have been slightly
corrupted by noise during digital acquisition; for this rea-
son, the NIRE cannot always be reduced by increasing the
number of moments. The NIRE curves show random be-
havior in some parts of the order �n� axis. If a noisy image
is reconstructed, only a few moments generate the mini-
mum NIRE. Amu et al.10 stated a relationship for the
signal-to-noise ratio of a noisy image f�r ,�� as follows:

SNRinput =
k2

A�2�
0

2� �
0

k

fnoisy
2 �r,��r dr d� , �19�

where � is the standard deviation of the noise, A is the area
of the image, and k its scale. In Sec. 5, we discuss a method
used to reduce noise in a Ronchigram image, based on the
Daubechies wavelet transform. Since the area A of the Ron-
chigram is required in Eq. �19�, it can be obtained using the
geometric moments of the image as described in the next
section.

4 Circles and Geometric Moments
In this section we obtain the area and the radius of the
Ronchigrams used as grayscale test images; a threshold
value is used to binarize the gray-level image under con-
sideration. Obviously, due to the circular aperture used to
capture a Ronchigram image, its binarization produces a
circle. Geometric moments are implemented to obtain the
area of the binarized image, and from it the corresponding
radius is computed.28 The geometric moments mpq of order
p+q of a binary image B�xi ,xj� are defined as

mpq = �
i=0

M−1

�
j=0

N−1

xi
pyj

qB�xi,xj� , �20�

where B�xi ,xj� takes the value 255 or 0 and M N is the
image size. By definition, the moment of order zero, m00,
represents the total intensity in the image, and the point
�m10/m00,m01/m00�= �x̄ , ȳ� is the intensity centroid. We can
define a family of circles C�k� by the equation

�x − x̄�2 + �y − ȳ�2 =
km00

255�
, �21�

where 0�k�1 represents the scale of the circle and
m00/255 is its area in pixels. The radius of the image is

Fig. 13 Denoising the input image to obtain a filtered reference
image.
given by

Optical Engineering 017002-1
= � km00

255�
1/2

, �22�

here the factor 1 /255 is introduced to normalize the circle
rea. A Ronchigram image with a circle drawn around it is
hown in Fig. 11. For digital purposes the integer part �r� is
sed instead of r; all pixels inside the circle of radius 98 are
ltered.

Noise Removal with Wavelet

oise in an image acquisition system generally exists due
o random fluctuations in the electrical signal from the de-
ector to the framegrabber or in the analog-to-digital con-
erter. The ability of the sensor to detect small amounts of
adiant energy may be inhibited by the presence of noise
uring the detection process and in certain environments;
hese little differences of radiant energy may change the
mage reconstruction process as illustrated in the preceding
ection. The orthogonal moments of the noisy image are a
ombination of the object and the noisy moments. Our
onchigrams have been acquired by a CCD sensor, and it

ntroduces enough noise to affect the reconstruction of the
mages. Noise can only be removed partially, because it is
enerally impossible to filter out all noise present in the
mage without modifying its spatial frequency content. In
articular, we are interested in quantifying the noise of the
nput images, and for that purpose a reference image is
btained using the Daubechies wavelet transform. In the
ollowing section, a quantitative analysis is carried out to
ompute the SNR of the input test image.

.1 Quantitative Analysis of Noise

his section briefly describes the method of noise removal
sing the wavelet transform.29–33 At each stage of the trans-
ormation, the image is decomposed into four quarter-size
mages, as shown in Fig. 12�a�, resulting from the input
mage of Fig. 11�c�. The circle does not contribute in any
ay to obtaining the wavelet transform; it is only a picture,
sed primarily to filter noise. To obtain the discrete wavelet
ransform f2

i �m ,n� with i=0,1 ,2 ,3 of an input image
f1�m ,n�, an orthogonal multiresolution basis with compact
upport has been used with the symmetric Daubechies
avelet family.30

In the wavelet transform plane a coefficient elimination
ule is implemented to filter out noise,33 as follows:

f2
i �m,n� = 0 �23�
January 2007/Vol. 46�1�2
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along directions i=1,2 ,3, as shown in Fig. 12�b�. These
directions are selected according to the amount of noise
required to be eliminated in each direction. A 2-D inverse
process is obtained via the inverse discrete wavelet
transformation.29,31 A reference filtered image fR�i , j� as
shown in Fig. 12�c� is obtained from the image of Fig.
12�b�, using its inverse wavelet transformation.

Many reference images can be obtained using the ker-
nels of the Daubechies family. Here we used the Daub�4�
kernel, which was selected in order to get the highest SNR.
The noise filtered from the input image to obtain the refer-
ence is shown in Fig. 13. The highest spatial frequencies
have been eliminated from the input and are found in the
image labeled “Noise.” After the reference image is ob-
tained, it can be used as a new input image in the process of

Fig. 14 NIRE for the input and filtered �refere
=8�16� , . . . ,23�46�. �a� Zernike, �b� Fo
pseudo-Jacobi-Fourier.
reconstruction using all moment sets. w

Optical Engineering 017002-1
The new behavior of the NIRE is shown in Fig. 14. The
urves indicate that high orders are more sensitive to noise.
or a given noisy image fnoisy�i , j� there is an SNRinput that
enerates an optimum number of moments suitable to mini-
ize the NIRE.
Our interest in this subsection is to evaluate the amount

f noise that was filtered to obtain the reference image.
eginning with the image of five fringes given in Fig. 11�c�
nd rewriting Eq. �19�, we get

NRinput �
k2I

A�2 , �24�

ages, using all moment sets, for orders n= l
ellin, �c� Chebyshev-Fourier, and d�
nce� im
urier-M
here I can be computed as

January 2007/Vol. 46�1�3
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I = �
i=0

M−1

�
j=0

N−1

fnoisy
2 �i, j� . �25�

To evaluate Eq. �24� only the pixels inside the circle in the
interval 0�rij �k are considered. Letting the value of the
scale be k=1, the image of Fig. 11�c� has area Ainput
=3.056104 px, and Iinput=4.777109 px. Equation �24�
then takes the form

SNRinput =
const

�2 , �26�

where const=1.563105. The variance in the input image
can be obtained using Eqs. �12� and �13�; its value is
�input

2 =4.737103, and SNRinput=32.998. A similar proce-
dure is followed for the reference image with the same
area; in this case, the values obtained are Ireference=5.716
109, const=1.87105, �reference

2 =3.859103, and
SNRreference=48.473.

6 Conclusions
We have reconstructed gray-level images with simple struc-
ture, such as Ronchigrams, using the four orthogonal mo-
ment sets reviewed in Sec. 2. The performance of these
moments in image reconstruction has been measured by
image quality metrics such as the NIRE, rms contrast, spa-
tial frequency, and SNR. These measures lead us to con-
clude that the Zernike moments are better than OFMM,
CHFM, and PJFM for describing gray-level images of in-
terference patterns.

The NIRE can be lowered using digital image-
processing techniques and geometrical transformations.
Also, noise reduction in the input image is substantially
important for high-order moments, as was shown in Fig.
14. It is clear that the reconstruction of Ronchigrams with
many fringes, as illustrated in the third example of Sec. 3.3,
depends on the high spatial frequencies involved. In this
case of 12 fringes, the mixture of high and low frequencies
produces abrupt changes, and the image reconstruction re-
quires moments of high order. Only polynomials with high
orders and homogeneous distributions of zeros, and without
very large values near the domain boundaries, can recon-
struct the original function without artifacts. As has been
shown, only the Zernike polynomials maintain these condi-
tions. The contrast in the reconstructed Ronchigrams has
been approximately retrieved, and again the Zernike mo-
ments give better contrast than the other sets of moments.

In general, the optimum number of moments to get a
minimum NIRE depends on the spatial frequencies and the
noise involved in the grayscale image. For the interference
patterns presented here the optimum number is around 15
�30� for 5 and 7 fringes, and around 20 �40� for 12 fringes.
Higher orders are required for interference patterns with
more fringes. On the other hand, it has been shown that the
reconstruction errors attain the lowest values when the in-
put image is previously mapped outside the unit circle. The
NIRE of the intensity distributions of the reconstructed im-
ages can be lowered using �f �2. Based on the results ob-
tained, the Zernike moments are superior for the Ronchi-

gram reconstruction to the other moment sets. 3
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