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A high-precision and fast algorithm for computation of Jacobi–Fourier moments (JFMs) is presented. A fast re-
cursivemethod is developed for the radial polynomials that occur in the kernel function of the JFMs. The proposed
method is numerically stable and very fast in comparison with the conventional direct method. Moreover, the
algorithm is suitable for computation of the JFMs of the highest orders. The JFMs are generic expressions to gen-
erate orthogonal moments changing the parameters α and β of Jacobi polynomials. The quality of the description of
the proposedmethodwith α and β parameters known is studied. Also, a search is performed of the best parameters,
α and β, which significantly improves the quality of the reconstructed image and recognition. Experiments are
performed on standard test images with various sets of JFMs to prove the superiority of the proposed method
in comparison with the direct method. Furthermore, the proposed method is compared with other existing meth-
ods in terms of speed and accuracy. © 2013 Optical Society of America
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1. INTRODUCTION
Jacobi–Fourier moments (JFMs) are widely used in image
analysis, pattern recognition, andmachine vision applications.
They were first introduced to image analysis by Ping et al. [1].
The most significant property of JFMs is their ability to char-
acterize, evaluate, and manipulate visual information with
minimum redundant information. They also have the property
of being invariant to translation, rotation, and scale. More-
over, the variation of parameters α and β of the Jacobi
polynomials can produce different sets of orthogonal mo-
ments: orthogonal Fourier–Mellin moments �α � 2; β � 2�,
Chebyshev–Fourier moments �α � 2; β � �3∕2��, pseudo-
Jacobi–Fourier moments �α � 4; β � 3�, and Legendre–
Fourier Moments �α � 1; β � 1�. In image analysis and pattern
recognition, JFMs have been used in classification of micro-
calcification in mammograms [2], classification of mechanical
parts [3], and gait recognition [4].

Teague [5] suggested reconstruction of a digital image from
orthogonal moments and introduced the Zernike moments.
The reconstruction helps us to know how well an image
can be described with a finite number of moments; it is also
associated with the quality of the description and the invari-
ance. There is a lot of literature on image analysis, including
the reconstruction of digital images [6–11]. This analysis only
performs the reconstruction of binary objects, such as ideo-
grams, and letters. Padilla et al. [12] present a detailed analysis
of the reconstruction of gray-level images using four different
families of orthogonal moments: Zernike, orthogonal Fourier–
Mellin, Chebyshev–Fourier, and pseudo-Jacobi–Fourier mo-
ments. In a previous analysis, two types of errors occurred
in the direct calculation of orthogonal moments: geometric
error and numerical integration error [13]. Such errors

contribute significantly to the inaccuracy of orthogonal mo-
ments and reconstruction. Recently, Xin et al. [14] proposed
an algorithm for high-precision numerical computation of
Zernike moments to significantly improve the quality of the
reconstructed image. The authors propose reconfiguring
the square pixel array to an array of polar pixels to eliminate
errors of geometry and to be able to calculate the integral
analytically. Moreover, Wee and Paramesra [15] achieve the
minimization of geometry error through a circular mapping,
where a whole square image is mapped inside a unit disk and
the integral is calculated analytically, similar to the exact geo-
metric moments. However, this method is numerically unsta-
ble for orders greater than 50. To reduce the computational
time, a few algorithms have been proposed to speed up the
computation of orthogonal moments [16–19]. These methods
suggest recursive algorithms to estimate the coefficients
of the radial polynomials. It has been observed that the
calculation of higher-order polynomials using radial-
expression-based recursive estimation of the coefficients
causes numerical instability; this is due to the use of power
in radial coordinates [20].

In this work, we present a novel algorithm to compute
JFMs in a fast and high-precision way, based on the polar
pixel arrangement scheme and recurrence relation with re-
spect to n, which is free powers of r. This new recurrence
relation helps us to calculate faster and reduces numerical
instability in higher-order radial polynomials. The polar
pixel arrangement scheme eliminates geometric and numeri-
cal integration errors. Moreover, this study proposes
the search for optimal parameters α and β of JFMs to signifi-
cantly improve the quality of reconstruction of a standard
test image.
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This work is organized as follows: Section 2 gives a brief
review of JFMs. A recursive method for the fast computation
of the Jacobi polynomials is presented in Section 3. Section 4
gives a detailed description of the polar pixel arrangement
scheme and the image conversion via interpolation bicubic
for the high-precision computing of JFMs. Empirical evalu-
ation of accurate and fast computation of the JFMs is
presented in Section 5. Finally, some conclusions are pre-
sented in Section 6. The recurrence relationship between
Jacobi and Zernike polynomials is shown in the Appendix A.

2. REVIEW OF JACOBI–FOURIER MOMENTS
The general expression for JFMs of order n and repetition m,
for a given image function f �r; θ� in polar coordinates, is
given by

An;m �
Z

2π

0

Z
1

0
f �r; θ�Pnm�r; θ�rdrdθ; (1)

where Pnm�r; θ� is the kernel function that consists of two
separable functions sets: the Jacobi orthogonal polynomial
Jn�α; β; r� and the exponential Fourier factor exp�jmθ�,
expressed by

Pnm�r; θ� � Jn�α; β; r� exp�jmθ�: (2)

The radial orthonormal Jacobi polynomials are defined as

Jn�α; β; r� �
��������������������
w�α; β; r�
bn�α; β�

s
Gn�α; β; r�; (3)

where Gn�α; β; r� are the Jacobi polynomials, bn�α; β� is the
normalization constant, and w�α; β; r� is the weight function
[21]. These expressions are calculated as follows [22]:

Gn�α; β; r� �
n!Γ�β�

Γ�α� n� ×
Xn
s�0

�−1�s Γ�α� n� s�
�n − s�!s!Γ�β� s� r

s; (4)

bn�α; β� �
n!Γ2�β�Γ�α − β� n� 1�
Γ�β� n�Γ�α� n��α� 2n� ; (5)

w�α; β; r� � �1 − r�α−βrβ−1; (6)

where Γ�·� is the gamma function, α − β > −1, and β > 0.
For digital images, Eq. (1) cannot be directly applied. Let

f �ri;j ; θi;j� be a digital image with spatial dimensions M × N .
Its discrete moments An;m are given by

~An;m �
XM−1

i�0

XN−1

j�0

f �ri;j ; θi;j� ~Pnm�ri;j ; θi;j�; (7)

where the discrete polar coordinates are expressed by

ri;j �
�����������������
x2i � y2j

q
ri;j ≤ 1;

θi;j � arctan
�
yj
xi

�
; (8)

and they are transformed by

xi � −1� 2i
N − 1

; yj � −1� 2j
M − 1

; (9)

where i � 0;…; N − 1, and j � 0;…; M − 1. When the integrals
of Eq. (1) are replaced by summations and the image is
normalized inside the unit disk, this approach is known as
zeroth-order approximation or direct method.

The accuracy of JFMs computed by Eq. (7) suffers from two
sources of error. First, geometric error exists due to the fact
that the total area covered by all the square pixels involved in
the computation of moments is not exactly the unit disk, as
illustrated by the ragged border in Fig. 1, and the second error
is caused by an approximation of the integral of Eq. (1) [13]. In
Section 4, these two errors are reduced by implementing polar
pixels to facilitate the computation of the integral.

3. PROPOSED RECURSIVE METHOD FOR
THE FAST COMPUTATION OF JACOBI–
FOURIER MOMENTS
Owing to the very time-consuming nature of computing the
polynomial values using Eq. (3), we propose a recursive
method for the fast computation of the Jacobi polynomials
of order n, occurring in the kernel function of JFMs. Further-
more, changing the parameters α and β of the recurrence re-
lations generated different families of orthogonal polynomials
with less computation time.

The calculation of factorials in Eq. (3) increases the com-
putation time and it is only accurate for factorials less than 21;
it is accurate for the first 15 digits of double precision num-
bers. Moreover, the computation of the nth power of r in
higher orders cause numerical instability in values around 1
in the unit disc. Consequently, the numerical instability will
drastically affect the quality of image reconstruction, particu-
larly for large images (larger than 128 × 128 pixels). The same
problems also occur for orthogonal Fourier–Mellin moments
[20]. In this case, the relation recurrence of the orthogonal pol-
ynomials eliminates the factorial calculation and powers of r.
However, a relation recurrence for the computation of JFMs
has not been presented yet. We propose the recurrence
relation with respect to n for the computing of Jacobi polyno-
mials, which is given by

Fig. 1. Cartesian pixel region for computing JFMs.
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DnJn�α; β; r� � �Cn−1 � 1 − 2r�Jn−1�α; β; r� − Dn−1Jn−2�α; β; r�;
(10)

where r ∈ �0; 1�, α − β > −1, β > 0 and the coefficients Cn and
Dn are calculated as follows:

Cn � �α − 1��2β − α − 1�
�2n� α − 1��2�n − 1� � α − 1� ; (11)

Dn �
������������������������������������������������������������������������������
4n�n� α − β��n� β − 1��n� α − 1�
�2n� α − 1�2�2n� α��2n� α − 2�

s
: (12)

For the initial numerical calculation, the Jacobi polynomials
of the zeroth and first normalized orders are given by

J0�α; β; r� �
��������������������
w�α; β; r�
b0�α; β�

s
; (13)

J1�α; β; r� � J0�α; β; r�
��������������������
�α� 2�β
α − β� 1

s �
1 −

α� 1
β

r
�
: (14)

It is clear that the recurrence relation by Eq. (10) is free
from factorial terms and powers of r; for these reasons, it
is reduced from numerical instability and behaves signifi-
cantly better than the direct method. In the conventional
method, numerical instability starts for orders ≥21. Figure 2
shows the results of calculating the Jacobi polynomials by
Eqs. (3) and (10), proposed here with different values of α
and β: Fig. 2(a) shows the plot of the Zernike polynomial
for order n � 46 and m � 0, Fig. 2(b) shows the plot of the
Mellin polynomial for order n � 23, and Fig. 2(c) shows the
plot of Chebyshev polynomial for order n � 23. The recur-
rence relation for Jacobi polynomials is very stable for higher
orders.

4. HIGH-PRECISION COMPUTATION OF
JACOBI–FOURIER MOMENTS
In order to increase the numerical accuracy calculation, Xin
et al. [14] proposed an algorithm based on changing the shape
of the square pixels in a polar pixel scheme for Zernike mo-
ments; this same strategy is used here to compute the JFMs.
This section presents an algorithm for computing JFMs in a
tiling scheme of polar pixels, which reduces both the geomet-
ric and the integration error.

A. Computing Jacobi–Fourier Moments in Polar Pixels
Computation of orthogonal moments in polar pixels is based
on the idea of a pixel arrangement scheme as shown in Fig. 3.
The unit disk is uniformly divided along the radial direction
into U sections, with radial distance of ru � u∕U where
u � 1…U . The number of polar pixels in the uth ring is
Su � �2u − 1�V , with angles θuv � �v − 1�2π∕Su, where v �
1…Su and V is the number of sectors contained in the inner-
most section. The total number of polar pixels is VU2 and
each of them has an area of π∕VU2. In practice, Xin et al. [14]
recommended setting a value of V � 4 and N∕2 ≤ U ≤ N for a
N × N image.

The calculation of the JFMs is performed by summation of
all sectors inside the unit disk. Equation (1) for the calculation
of JFMs is rewritten as

(a)

(b)

(c)
Fig. 2. Graphs of Jacobi polynomials of order n � 23 through the
conventional method and the recurrence relation. (a) J23�1; 1; r2�,
(b) J23�2; 2; r�, and (c) J23�2; 3∕2; r�.
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Ânm �
XU
u�1

X�2u−1�V

v�1

f̂ �ruv; θuv�ωnm�ruv; θuv�; (15)

where f̂ �ruv; θuv� is an approximation of the function
f �ri;j ; θi;j� defined over a set of concentric sectors Ωuv, and
the factor ωnm�ruv; θuv� is given by

ωnm�ruv; θuv� �
ZZ

Ωuv

Jn�α; β; r� exp�jmθ�rdrdθ;

�
Z

r�e�uv

r�s�uv

Jn�α; β; r�rdr
Z

θ�e�uv

θ�s�uv

exp�jmθ�dθ;

� I1 × I2; (16)

where r�s�uv and r�e�uv denote the starting and ending radii of the
sector Ωuv, respectively, while θ�s�uv and θ�e�uv denote the starting
and ending angles of the sector Ωuv, respectively, as shown in
Fig. 4. The integral of the complex Fourier component of
Eq. (16) can be analytically calculated as

I2 �
� j

m �exp�−jmθ�e�uv � − exp�−jmθ�s�uv��; m ≠ 0

θ�e�uv − θ�s�uv ; m � 0
: (17)

Moreover, the analytical calculation of the integral over the
coefficients of the orthonormal Jacobi polynomials is numeri-
cally unstable in computation of powers greater than 21 for
the radial coordinate, causing an increase of the error in
the calculation of JFMs. This error can be reduced by the re-
currence relation given in Section 3. Therefore, we chose to

compute the integral using the 10-point Gaussian quadrature
rule, which is less accurate but stable numerically, to compute
integrals of higher-order polynomials. The composite Gaus-
sian quadrature rule for numerical integration of the Jacobi
polynomial can be stated as

I1 �
r�e�uv − r�s�uv

2

X10
k�1

ηkJn

�
α; β;

r�e�uv − r�s�uv

2
zk �

r�e�uv � r�s�uv

2

�
: (18)

Here, ηk are weights and zk ∈ �−1; 1� are the points where the
function is evaluated. The values of ηk and zk are given in
Table 1. It is clear that the 10-point Gaussian quadrature rule
requires greater computation time for the number of points
that it is needed, but the polar pixel arrangement reduces
the complexity of two-dimensional to one-dimensional inte-
grals; this characteristic is not reached with square pixels.
The two-dimensional method of Gaussian quadrature is used
for the exact calculation of orthogonal moments [23,24]. The
algorithm is computationally more expensive, as the kernel
function is evaluated in k2 points while the one-dimensional
integral only required k points.

B. Image Representation
A digital image is defined by sets of square pixels. It can be
easily verified that the locations of the Cartesian pixels do not
coincide with those of the polar pixels, as shown in Fig. 3.
Therefore, we have to derive the polar counterpart of a given
pixel Cartesian image before computing the Jacobi–Fourier
moments. This problem can be resolved by bicubic interpola-
tion of the third order introduced in [25]. Cubic convolution
interpolation is a new technique for resampling discrete data.
The cubic convolution interpolation kernel is given by

u�x� �
8<
:

3
2 jxj3 − 5

2 jxj2 � 1 0 < jxj < 1
−

1
2 jxj3 � 5

2 jxj2 − 4jxj � 2 1 < jxj < 2
0 2 < jxj

: (19)

The image value at Ωuv can be estimated via the two-
dimensional cubic convolution interpolation function; this
function is expressed by

f̂ �ruv; θuv� �
Xk�2

i�k−1

Xl�2

j�l−1

f �i; j�u�k − i�u�l − j�; (20)

Fig. 3. Polar pixel representation of an image.

Fig. 4. Concentric sector Ωuv or polar pixel.

Table 1. Weights (ηk) and Location of

Sampling Points (zk) for 10-Point Gaussian

Quadrature

k ηk zk

1 0.0666713443 −0.9739065285
2 0.1494513492 −0.8650633667
3 0.2190863625 −0.6794095683
4 0.2692667193 −0.4333953941
5 0.2955242247 −0.1488743390
6 0.2955242247 0.1488743390
7 0.2692667193 0.4333953941
8 0.2190863625 0.6794095683
9 0.1494513492 0.8650633667
10 0.0666713443 0.9739065285
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where u is the interpolation kernel of Eq. (19), k �
�N∕2�ruv cos θuv � �N∕2� � 1, and l � �N∕2�ruv sin θuv�
�N∕2� � 1. Figure 5 shows the boat image represented in a
polar pixel scheme with the parameters V � 4 and U � 32.
The polar pixel values were obtained by bicubic interpolation
of Eq. (20).

5. VALUATION OF THE ALGORITHM
There are a few results in the literature showing reconstruc-
tions of images greater than or equal to 128 × 128 pixels with
high orders [14,20,26]. This section performs the evaluation of
the proposed method from two different perspectives, a 256 ×
256 pixel image reconstruction and invariance to rotation and
scale. Furthermore, a comparative analysis of the normaliza-
tion image reconstruction error (NIRE) and the computation
time for different methods is performed.

The test images are shown in Fig. 6. The boat image has fine
details, such as pulleys, ropes, masts, and antennas that hin-
der reconstruction and can be used to visually verify
reconstruction quality. Moreover, the errors inherent in the
estimation of the JFMs are caused by numerical instability
when calculating Jacobi polynomials, the geometry of the pix-
els, and the approximation of the integral. These errors are
affected in the same way in binary and gray-level images.
The proposed method significantly reduces these errors so
that the fine details of the image are observed in the recon-
structed image.

A. Improvement of Image Reconstruction
Image reconstruction can help to determine how well an im-
age may be characterized by a small finite set of its moments.
According to orthogonal theories, an original image f �i; j� can
be reconstructed by an infinite number of Jacobi–Fourier mo-
ments. The reconstructed discrete distribution of the image is
given by

~f �i; j� �
XL
n�0

XL
m�0

jÂnmjJn�α; β; rij� exp�−jmθij�; (21)

where ~f �i; j� is the reconstructed version of f �i; j�, and L is the
maximum order of JFMs used in the reconstruction of the im-
age. The JFMs are a generic expression to generate different
sets of orthogonal moments and, in addition, the low computa-
tional cost allows extensive analysis. Therefore, digital image
reconstruction is performed for a set of orthogonal moments
based on the JFMs. In the analysis of reconstruction of
gray-level images, Zernike moments (ZMs) [5], orthogonal
Fourier–Mellin moments (OFMMs) [6], pseudo-Jacobi–
Fourier moments (PJFMs) [7], Chebyshev–Fourier moments
(CFMs) [8], Legendre–Fourier moments (LFMs), and JFMs
(α � 8, β � 2) are used, as shown in Figs. 7 and 8. In all of
the cases, the reconstructions performed by the proposed
method are visually much better than those performed by
the direct method. There is a particular case of ZMs for
low order, as shown in Fig. 7, where L � 20; they are visually
identical. In the case of the direct method, the image is ob-
scured as the orders are increased. This is because of an error,Fig. 5. Boat image in a polar pixel scheme.

Fig. 6. Boat image for different scales and rotations. (a) Original
512 × 512 pixel test image. (b) The image in (a) is scaled by
k � 0.75. (c) The image in (a) is scaled by k � 0.75 and rotated by
g � 15°. (d) The image in (a) is scaled by k � 0.50. (e) The image
in (a) is scaled by k � 0.50 and rotated by g � 15°.
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which is demonstrated in Eq. (1), that causes an error in the
orthogonality condition when it is reconstructed.

The NIRE is used for the performance analysis of orthogo-
nal moments [6]. It is defined as the normalized mean square
error between the input image f �i; j� and its reconstruction
~f �i; j�, and in discrete form is given by

NIRE �
PN−1

i�0

PM−1
j�0 �~f �i; j� − f �i; j��2PN−1

i�0

PM−1
j�0 f 2�i; j� : (22)

The NIRE results for the different sets of orthogonal mo-
ments (PJFMs, LFMs, CFMs, OFMMs, ZMs, and JFMs), using
the direct method and proposed method, are shown in Fig. 9.
The quality of reconstruction by the proposed method is sig-
nificantly better than the direct method. In the proposed
method, the reconstruction quality remains stable to n > 100,
while in the direct method, the NIRE decreases to a given
point and then increases.

Bhatia and Wolf [27] pointed out that there is an infinite
number of complete sets of orthogonal polynomials that
are invariant to rotation and can be obtained from the Jacobi
polynomials. Each set is obtained by the combination of the
parameters α and β. Therefore, there may be a set of orthogo-
nal moments better fit to specific applications. We define the
mean of NIRE as a metric to quantitatively evaluate the best
combinations of α and β. The mean value of NIRE is given by

Ψ�α; β� � 1
p

Xp
L�1

NIRE�L; α; β�; (23)

where L is the maximum order of JFMs used in the
reconstruction of the input image and p is the cutting orders.
The cutting order p can find the optimal parameters for mo-
ments of low and high order. In general, low-order moments
represent the global shape of an image, and high-order mo-
ments represent the detail [12]. Figure 10 shows the exhaus-
tive searches performed for the boat image [Fig. 6(d)] for
values of α � 1…10 and β � 1…10, with the aim to find the
optimum combination of moments of low and high order.
Note that the search space is restricted by α − β > −1, and
the sections with minimum values represent the neighbor-
hood of the best combinations of α and β. In the case of
low-order moments, the optimum parameters, α � 2 and
β � 1, are found as shown in Fig. 10(a); similarly are the
high-order moments, α � 8 and β � 2, shown in Fig. 10(b).
For the latter, the results of the reconstruction and NIRE
are, respectively, shown in Figs. 8 and 9. The fast calculation
proposed of the JFM facilitates the search for the best values α
and β of the moments of low and high orders that best fit
specific applications.

Direct
Method

Proposed
Method

Direct
Method

Proposed
Method

Direct
Method

Proposed
Method

PJFMs
(JFMs   =4,   =3)

LFMs
(JFMs   =1,   =1)

CFMs
( )JFMs    =2,  =3/2

L=20 L=60 L=100 L=200

Maximum order reconstruction

Fig. 7. 256 × 256 pixel reconstructions of the image in Fig. 4(d) using
pseudo-Jacobi–Fourier moments, Legendre–Fourier moments, and
Chebyshev–Fourier moments. The maximum orders of reconstruction
are 20, 100, and 200.

Direct
Method

Proposed
Method

Direct
Method

Proposed
Method

Direct
Method

Proposed
Method

OFMMs
(JFMs   =2   =2)

ZMs
(Appendix A)

JFMs(   =8,   =2)

L=20 L=60 L=100 L=200

Maximum order reconstruction ( in Zernike)2L

Fig. 8. 256 × 256 pixel reconstructions of the image in Fig. 4(d) using
orthogonal Fourier–Mellin moments, ZMs, and JFMs with α � 8 and
β � 2. The maximum orders of reconstruction are 20, 60, 100, and 200.

Fig. 9. NIRE of the 256 × 256 pixel boat image for different orthogo-
nal moments.
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B. Improvement of Rotation and Scale Invariance of
JFMs
One of the most important properties of the orthogonal mo-
ments in the unit disk is the invariant representation of the
scaled and rotated object. If a distorted image f �r∕k; θ − γ�
is rotated γ degrees and scaled by a factor k, all JFMs of
the resulting image, Â�γ;k�

nm , are related with the JFMs of the
original image by

Â�γ;k�
nm � Ânme−imγ : (24)

Therefore, the modulus JFMs,

jÂ�γ;k�
nm j � jÂnmj; (25)

are invariant to scale and rotation. In the accurate calculation,
it is not required that Eq. (25) be normalized such as in the
direct method. The normalization for the JFMs proposed by
Ping et al. [1] is given as

1

k2
jÂ�γ;k�

nm j � jÂnmj; (26)

where k is obtained using the low orders of Fourier–Mellin
moments [6]

Mnm �
Z

2π

0

Z
1

0
rnf �r∕k; θ − γ� exp�−imθ�rdrdθ; (27)

M̂nm �
Z

2π

0

Z
1

0
rnf �r; θ� exp�−imθ�rdrdθ; (28)

k � �M10∕M00�
�M̂10∕M̂00�

: (29)

The change of magnitude of JFMs before and after the image
will be rotated and scaled reveals its computational accuracy.
The relative error of the magnitude of JFMs is given by

δAnm �
1
k2
jÂ�γ;k�

nm j − jÂnmj
jÂnmj

; (30)

where k is scale factor, and jÂ�γ;k�
nm j and jÂnmj are the estimate

magnitudes of the distorted image and original image, respec-
tively. The proposed method does not require a scaling factor.
Figure 11 shows the result of δAnm between Figs. 6(a) and 6(c)
for the proposed method (k � 1) and the direct method [k is
calculated by Eq. (29)].

A measure to facilitate the comparison among different
orthogonal moment calculations is by normalized mean
squared error (NMSE), which is given as

NMSE�jÂnmj; jÂ�γ;k�
nm j� � 1

L2

XL
n�1

XL
m�1

�
1
k2
jÂ�γ;k�

nm j − jÂnmj
�
2

jÂnmj2
; (31)

where L2 is the number of JFMs involved in the evaluation.
Figure 12 shows the NMSE with angles of rotation of 2°–
90°, with 4 intervals and scales of 0.75 and 0.5. For each
rotation angle and scale, the first 100 JFMs (L � 10) are cal-
culated with the proposed and direct method. It is clear that
the proposed method greatly surpasses the direct method in
terms of its invariance to rotation and scale. The NMSE values
must be zero, but increase when the image is reduced and
remain nearly constant when rotated.

C. Noisy Image Reconstruction
Sensitivity to noise is a critical issue for image moments. We
compare the JFMs for peak signal to noise ratio (PSNR) and
their performance for image reconstruction in the presence of
noise. The PSNR is the ratio between a signal’s maximum
power and the power of the signal noise. PSNR is usually
expressed in decibels, which is a logarithmic scale,

PSNR � 10 log10

�
2552

MSE

�
: (32)

Here, mean square error (MSE) is defined as

MSE � 1
N ×M

XN−1

i�0

XM−1

j�0

�f �i; j� − f ��i; j��2; (33)

(a)

(b)
Fig. 10. Search space of the optimal parameters. (a) Low-order
moments, L � 20. (b) High-order moments, L � 200.
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where f �i; j� is the input image and f ��i; j� is the
reconstruction of the noisy image. Figure 13 shows the result
of PSNR of the boat image with different parameters of Gaus-
sian noise (μ � 0, σ2 � 0, 0.02, 0.05, 0.1) using the proposed
method, with α � 8 and β � 2. The PSNR values decrease
with increasing σ2, and these changes are not very large for
low-order moments (L ≤ 20).

Moreover, the best PSNR values are when L � 78; the
reconstruction is shown in Fig. 14. The results show that with
higher-order moments than 20, the reconstruction is not
reliable because the added noise degrades the reconstructed
image.

D. Comparisons with Other Existing Algorithms
There are limited references on the fast and accurate calcu-
lation of the JFMs, although they have been the basis for gen-
erating new sets of orthogonal moments. However, in recent
years, there has been some interest in the fast and accurate
calculation of the OFMMs [18–20]. They have also been shown
to be superior to other functions such as radial ZMs, particu-
larly in terms of signal to noise ratio and reconstruction errors
[6]. For these reasons, we performed a comparative analysis
of the proposed method of JFMs with α � β � 2 (OFMMs)

versus the fast and accurate algorithms of the OFMMs.
We performed a comparative analysis of the methods of
Papakostas et al. [18], Hosny et al. [19], Walia et al. [20], and
the direct calculation in terms of speed and accuracy for a
256 × 256 pixel image. Table 2 presents the computational
complexity of the four methods. The comparison shows that,
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Fig. 11. Relative error between the first 100 JFMs of Figs. 6(a) and
6(c). (a) Results from the proposed method. (b) Results from the
direct method.
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Fig. 13. PSNR of the 256 × 256 pixel reconstruction of the boat im-
age, corrupted by an additive Gaussian noise of zero mean and σ2 � 0,
0.02, 0.05, 0.01.
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in the proposed method, the number of multiplications and
additions is drastically reduced. Since the computation time
does not depend on image content, only one image is consid-
ered for the analysis. To perform the simulations, a Sony Elec-
tronics, Inc., Model VAIO Computer Notebook PC with Intel
Core i5-2430M CPU, 2.40 GHz processor, and 4.00 GB of RAM
is used. The code is implemented using Matlab. Figure 15
shows the computation time of the different methods; as
can be observed, the proposed method and the method of

Hosny et al. are faster than the other methods. This is because
using an arrangement of polar pixels facilitates the calculation
of orthogonal moments. Although the Papakostas et al. and
Walia et al. methods used recurrence relations that are faster
than the direct method, these methods are based on square
pixels.

The methods of Papakostas et al., Hosny et al., and the di-
rect method are based on the calculation of the coefficients of
Mellin orthogonal polynomials, which causes numerical insta-
bility for orders greater than 21, as can be observed in terms of
NIRE as shown in Fig. 16. We can also observe that the meth-
ods based on recurrence relations with respect to n, such as
our method and the Walia et al. method, are numerically
stable. The Hosny et al. [19] method has a better image
reconstruction for low orders due to its integration analyti-
cally, but is numerically unstable for high orders. It is clear
that the proposed method is more precise and numerically
stable than the compared methods.

6. CONCLUSIONS
We have proposed a novel approach for high-precision, fast
computation of JFMs. Furthermore, this approach allows us
to generate sets of different orthogonal moments. Ping et al.
[1] suggest that the common formulation of the orthogonal
moments through the Jacobi polynomials will be a benefit
for performance analysis of the orthogonal moments and
for searching a prime orthogonal moment. This idea has been
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=0.0
=0.05

=0.0
=0.1

Noise Image Reconstruction
image

Fig. 14. Boat image corrupted by an additive Gaussian noise of zero
mean and σ2 � 0.02, 0.05, 0.01 and its respective reconstruction, with
L � 78, α � 8, and β � 2.
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Table 2. Comparison of Computations by Method

Number of
Additions

Number of
Multiplications

Direct method ≈N2�L2 � L� ≈3N2�L2 � L�
�L�L� 1��L� 2��

8�N2

6

� �L�L� 1��L� 2��
5�N2

6

�
N � 256, L � 10 21628640 36045900

Papakostas et al. [18] ≈N2�L2 � L� ≈N2�3L2 � 2L�
�L�L� 1��L� 2��

5�N2

6

� �L�L� 1��L� 2��
5�N2

6

�
N � 256, L � 10 21627980 35390540

Hosny et al. [19] ≈N2�L2 � 3L� ≈N2�3L2 � 2L�
�L�L� 1��L� 2��

1� N
2

� �L�L� 1��L� 2��
1� N

3

�
8689960 21085480

Walia et al. [20] ≈N2�L2 � 3L� ≈N2�3L2 � 5L�
N � 256, L � 10 8519680 22937600

Our method ≈N2�L2 � 3L� ≈N2�3L2 � 2L� � �L − 2�
(Proposed method) ��L − 2��16� N�

�
10� 3N

2

�
� N�31� L�

N � 256, L � 10 8521856 20987728

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L

N
IR

E

Proposed Method
Direct Method
Papakostas et al.
Hosny et al.
Walia et al.

Caused by numerical instability 17

18

19

Fig. 16. Computation of NIRE for different methods with a 256 × 256
pixel image.
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ignored due to its high computational costs. Our method fa-
cilitates the search of optimal parameters that best fit specific
applications.

Moreover, improving the rotation and scale invariance
compared to the direct method also facilitates the calculation
because calculation of a scale factor is not required. The ar-
rangement of polar pixels used and the proposed recurrence
relation improves computation time and reconstruction error
for gray-level images with large size. The numerical stability
and accuracy of our method is proved through the NIRE, as
shown in Fig. 9. It also has a higher numerical stability than
the Xin et al. [14] method, as it is free of factorials and power
of r, allowing for the computation of higher orders.

Experimental results show that the proposed method in
this work performs consistently better than the methods of
Papakostas et al., Hosny et al., Walia et al., and the direct
method in terms of image reconstruction capability and com-
putation time for the OFMMs (JFMs with α � 2 and β � 2).
Therefore, the proposed method is not only faster, but is also
high precision and numerically stable. It has direct applica-
tions in pattern recognition problems where invariant feature
vectors are needed.

APPENDIX A: ZERNIKE MOMENTS
In Appendix B of [28], the relationship between Jacobi poly-
nomials with the Zernike polynomials is given by

Rm
m�2s�r� � rmJs�m� 1;m� 1; r2�; (A1)

where Rm
m�2s�r� are the Zernike polynomials. Therefore, the

coefficients Cs and Ds of Eq. (10), when α � β � m� 1,
can be calculated as follows:

Cs �
m2

�2s�m��2s�m − 2� ; (A2)

Ds �
2s�s�m�

�2s�m�
��������������������������������������������������������
�2s�m� 1��2s�m − 1�

p : (A3)

For the initial calculation, the Jacobi polynomials of zeroth
order and first order normalized in terms of the Zernike poly-
nomials are given by

J0�m� 1;m� 1; r2� � 1; (A4)

J1�m� 1;m� 1; r2� � −

��������������
m� 3
m� 1

r
r2: (A5)

As seen, one can calculate a relation of recurrence of Zernike
polynomials as a special case of the Jacobi polynomials.
Furthermore, the ZMs cannot be calculated as a special case
of the JFMs changing the parameters α and β, as mentioned in
[1]. To check that it is not a special case, we have the JFMs,
given by

JFMα;β
n;m �

Z
2π

0

Z
1

0
f �r; θ�Jn�α; β; r�e−iθmdrdθ; (A6)

where Jn�α; β; r� are the Jacobi polynomials. The ZMs are
given as

ZMn;m �
Z

2π

0

Z
1

0
f �r; θ�Rm

n �r�e−iθmdrdθ; (A7)

where Rm
n �r� are the Zernike polynomials. With the relation-

ship between Eqs. (A1) and (A7) are obtained the ZMn;m in
terms of the Jacobi polynomials,

ZMm�2s;m �
Z

2π

0

Z
1

0
f �r; θ�rmJs�m� 1;m� 1; r2�e−iθmdrdθ:

(A8)

The JFMs when α � β � m� 1 and n � s are given as

FMm�1;m�1
s;m �

Z
2π

0

Z
1

0
f �r; θ�Js�m� 1;m� 1; r�e−iθmdrdθ;

(A9)

and therefore ZMm�2s;m ≠ FMm�1;m�1
s;m . The kernel of the ZMs

has a different nature because angular order m is both in ra-
dial and angular coordinates, unlike JFM, which is only the
angular coordinate. Moreover, calculating the Zernike polyno-
mials from the Jacobi polynomials for the ZMs is not difficult.
However, the JFMs cannot compare with the ZMs because
every one has different complexity. The radial kernel of the
ZMs depends on the radial and angular order and therefore
requires a greater amount of Zernike polynomials, unlike
the JFMs, which only require the polynomials of the radial
order. This means that the JFMs have less computing time
than the ZMs.

ACKNOWLEDGMENTS
This work is funded by CONACyT, México. César Joel
Camacho Bello would like to thank CONACyT for scholarship
number 423493.

REFERENCES
1. Z. Ping, H. Ren, J. Zou, Y. Sheng, andW. Bo, “Generic orthogonal

moments: Jacobi–Fourier moments for invariant image descrip-
tion,” Pattern Recogn. 40, 1245–1254 (2007).

2. N. V. S. Sree Rathna Lakshmi and C. Manoharan, “An automated
system for classification of micro calcification in mammogram
based on Jacobi moments,” IJCTE 3, 431–434 (2011).

3. C. Toxqui-Quitl, A. Padilla-Vivanco, and J. Baez-Rojas, “Classifi-
cation of mechanical parts using an optical-digital system and
the Jacobi–Fourier moments,” Proc. SPIE 7389, 738934 (2009).

4. C. Camacho-Bello, C. Toxqui-Quitl, and A. Padilla-Vivanco,
“Gait recognition by Jacobi–Fourier moments,” in Frontiers
in Optics/Laser Science XXVII, OSA Technical Digest (Optical
Society of America, 2011), paper JTuA19.

5. M. R. Teague, “Image analysis via the general theory of
moments,” J. Opt. Soc. Am. 70, 920–930 (1980).

6. Y. L. Sheng and L. X. Shen, “Orthogonal Fourier–Mellin moments
for invariant pattern recognition,” J. Opt. Soc. Am. A 11,
1748–1757 (1994).

7. G. Amu, S. Hasi, X. Yang, and Z. Ping, “Image analysis by pseudo-
Jacobi (p=4, q=3)-Fourier moments,” Appl. Opt. 43, 2093–2101
(2004).

8. Z. L. Ping, R. G. Wu, and Y. L. Sheng, “Image description with
Chebyshev–Fourier moments,” J. Opt. Soc. Am. A 19, 1748–1754
(2002).

9. B. Xiao, J. F. Ma, and X. Wang, “Image analysis by Bessel–
Fourier moments,” Pattern Recogn. 43, 2620–2629 (2010).

10. H. Ren, Z. Ping, W. Bo, W. Wu, and Y. Sheng, “Multi-distorted
invariant image recognition with radial-harmonic-Fourier
moments,” J. Opt. Soc. Am. A 20, 631–637 (2003).

Camacho-Bello et al. Vol. 31, No. 1 / January 2014 / J. Opt. Soc. Am. A 133



11. H. Hu and P. Zi-liang, “Computation of orthogonal Fourier–
Mellin moments in two coordinate systems,” J. Opt. Soc. Am.
A 26, 1080–1084 (2009).

12. A. Padilla-Vivanco, G. Urcid-Serrano, F. Granados-Agustín, and
A. Cornejo-Rodríguez, “Comparative analysis of pattern
reconstruction using orthogonal moments,” Opt. Eng. 46,
017002 (2007).

13. S. X. Liao and M. Pawlak, “On the accuracy of Zernike moments
for image analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20,
1358–1364 (1998).

14. Y. Xin, M. Pawlak, and S. Liao, “Accurate computation of
Zernike moments in polar coordinates,” IEEE Trans. Image
Process. 16, 581–587 (2007).

15. C. Y. Wee and R. Paramesran, “On the computational aspects of
Zernike moments,” Image Vis. Comput. 25, 967–980 (2007).

16. R. Biswas and S. Biswas, “Polar Zernike moments and rotational
invariance,” Opt. Eng. 51, 087204 (2012).

17. R. Mukundan and K. R. Ramakrishnan, “Fast computation of
Legendre and Zernike moments,” Pattern Recogn. 28,
1433–1442 (1995).

18. G. A. Papakostas, Y. S. Boutalis, D. A. Karras, and B. G. Mertzios,
“Fast numerically stable computation of orthogonal Fourier–
Mellin moments,” IET Comput. Vis. 1, 11–16 (2007).

19. K. M. Hosny, M. A. Shouman, and H. M. Abdel Salam, “Fast
computation of orthogonal Fourier–Mellin moments in polar
coordinates,” J. Real-Time Image Process. 6, 73–80 (2011).

20. E. Walia, C. Singh, and A. Goyal, “On the fast computation
of orthogonal Fourier–Mellin moments with improved
numerical stability,” J. Real-Time Image Process. 7, 247–256
(2012).

21. M. Abramowitz and I. A. Stegun, Handbook of Functions
with Formulas, Graphs and Mathematical Tables (Dover,
1964).

22. T. Hoang and S. Tabbone, “Errata and comments on ‘generic
orthogonal moments: Jacobi–Fourier moments for invariant
image description,” Pattern Recogn. 46, 3148–3155 (2013).

23. C. Singh and R. Upneja, “Accurate computation of orthogonal
Fourier–Mellin moments,” J. Math. Imaging Vision 44,
411–431 (2012).

24. C. Singh, E. Walia, and R. Upneja, “Accurate calculation of
Zernike moments,” Inf. Sci. 233, 255–275 (2013).

25. R. G. Keys, “Cubic convolution interpolation for digital image
processing,” IEEE Trans. Acoust. Speech Signal Process. 29,
1153–1160 (1981).

26. C. Toxqui-Quitl, L. Gutierrez-Lazcano, A. Padilla-Vivanco, and C.
Camacho-Bello, “Gray-level image reconstruction using Bessel–
Fourier moments,” Proc. SPIE 8011, 80112T (2011).

27. A. B. Bhatia and E. Wolf, “On the circular polynomials of Zernike
and related orthogonal sets,” Proc. Cambridge Philos. Soc. 50,
40–48 (1954).

28. M. Born and E. Wolf, Principles of Optics (Cambridge
University, 1999).

134 J. Opt. Soc. Am. A / Vol. 31, No. 1 / January 2014 Camacho-Bello et al.


