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Abstract. A detailed analysis of the quaternion generic Jacobi-Fourier moments (QGJFMs) for color image
description is presented. In order to reach numerical stability, a recursive approach is used during the compu-
tation of the generic Jacobi radial polynomials. Moreover, a search criterion is performed to establish the best
values for the parameters α and β of the radial Jacobi polynomial families. Additionally, a polar pixel approach is
taken into account to increase the numerical accuracy in the calculation of the QGJFMs. To prove the math-
ematical theory, some color images from optical microscopy and human retina are used. Experiments and
results about color image reconstruction are presented. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction
In recent years, moments have been successfully used in a vari-
ety of research areas such as image registration,1 face recogni-
tion,2 angle estimation,3 watermarking,4 pattern reconstruction,5

medical imaging,6–8 focus measures,9 image analysis,10 forensic
applications,11 gait phase detection,12 and so forth. In the 1960s,
Hu13 introduced a set of invariants based on the low-order geo-
metric moments for pattern recognition tasks. Almost two dec-
ades later, Teague14 proposed Zernike and Legendre moments
derived from the basis set of orthogonal polynomials. It is
known that one of the main advantages of moments with
orthogonal basis functions is the ability to represent the global
features of an image by a set of mutually independent descrip-
tors, with a minimal amount of information redundancy. As
stated by Bhatia and Wolf,15 there are an infinite number of
orthogonal sets inside the unit circle. Some orthogonal moments
are derived from the basis set of pseudo-Zernike,16 Chebyshev-
Fourier,17 orthogonal Fourier-Mellin,18 radial harmonic
Fourier,19 and Bessel-Fourier20 polynomials. Additionally, new
orthogonal basis sets of circular moments have been proposed
from the generic formula of the Jacobi radial polynomials,21–23

where each set can be generated by combinations of two real
parameters, which are commonly denoted as α and β. Also,
Jacobi-Fourier moments (JFMs) have been successfully proven
in pattern recognition,24 image analysis,25 and machine vision
applications.26 Recently, quaternion color moments have been
introduced on the basis set of Fourier-Mellin,27 Zernike,28 and
Bessel-Fourier polynomials.29 These works have extended the
capabilities of moments for describing color or RGB images.
Consequently, new invariant descriptors have been proposed
for pattern recognition while new algorithms for image
reconstruction also have been studied. In the same direction,

Karakasis et al.30 presented a general framework for computing
accurate quaternion color moments based on different orthogo-
nal polynomials, from continuous to discrete polynomials and
from Cartesian to circular symmetries.

On the other hand, in Ref. 23, there exists an analysis of the
interconversion between the two historical definitions of the
radial Jacobi polynomials; this interesting paper points out
and clears the confusing points between both definitions.
However, the computations of the polynomials through these
formulas take into account the calculation of factorials of
high orders. Unfortunately, this method of computing the radial
polynomials causes strong numerical instability and inaccuracy
for orders higher than n ¼ 21. This effect is most evident in the
reconstruction of large images as those acquired in the biomedi-
cal areas.

In many biomedical laboratories, it is a common task to
count some microscopic specimens in order to help the clinical
analysis or during the diagnostic of some diseases. A quality
control program for clinical laboratories is commonly described
by features such as accuracy, precision, tendency to avoid erro-
neous results, and tendency to avoid systematically different
results in different laboratories. All of these situations should
be supported by the use of automatic methods of pattern recog-
nition and by the employment of digital image techniques,
which must be based on numerical features increasingly more
accurate and faster during the data processing.

In another context, retina images have been of interest in
many scientific analyses as the biometric identification of peo-
ple, among other applications. Due to this fact, new numerical
approaches to analyze these kinds of images are continuously
required. In this paper, we research the capabilities of image
description from the quaternion generic Jacobi-Fourier moments
(QGJFMs). This investigation makes use of the variations of the
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Jacobi polynomials by the α and β parameters, because they can
use different sets of quaternion orthogonal moments such as
quaternion orthogonal Fourier-Mellin moments (α ¼ 2, β ¼ 2),
quaternion Chebyshev-Fourier moments (α ¼ 2, β ¼ 3∕2), qua-
ternion pseudo Jacobi-Fourier moments (α ¼ 4, β ¼ 3), qua-
ternion Legendre-Fourier moments (α ¼ 1, β ¼ 1), quaternion
pseudo-Zernike moments, and quaternion Zernike moments.
The analysis is done in the context of a polar pixel scheme
and by means of an algorithm for fast computation and high
precision.25,26 Furthermore, this study proposes the search for
optimal parameters α and β of QGJFMs to significantly improve
the quality of reconstruction. The analysis is then applied to
reconstruct some color biomedical images in circular symmetry
as validation tests of the algorithm.

This work is organized as follows. Section 2 introduces
QGJFMs. In Sec. 3, the QGJFMs are computed on the
geometry of polar pixels and presents an image conversion
via bicubic interpolation for the high-precision computing of
QGJFMs. In Sec. 4, an inverse quaternion transformation for
reconstruction of RGB images is presented. Also, in this section,
the normalized image reconstruction error is used as a measure-
ment of image reconstruction. Section 5 takes into account a
numerical comparison with other methods in the context of a
test RGB image for different orders of reconstruction. Some
experimental results are presented in Sec. 6, where an evaluation
of accurate and fast computation through some color biomedical
images has been used. Finally, the conclusions of this research
are presented in Sec. 7.

2 Quaternion Generic Jacobi-Fourier
Moments

Recently, quaternion moments have been used as a novel
method for describing color images. The quaternion theory is
a generalization of the complex theory of numbers. A quaternion
q is composed of one real part and three imaginary parts; it takes
the following form:

EQ-TARGET;temp:intralink-;e001;63;354q ¼ aþ biþ cjþ dk; (1)

where a, b, c, and d are real numbers and i, j, and k are three
imaginary units. The basic operations among them are in accord
with the following rules:
EQ-TARGET;temp:intralink-;e002;63;290

i2 ¼ j2 ¼ k2 ¼ −1;

ij ¼ −ji ¼ k;

jk ¼ −kj ¼ i;

ki ¼ −ik ¼ j: (2)

The conjugate and modulus of a quaternion are, respectively,
defined by

EQ-TARGET;temp:intralink-;e003;63;184q� ¼ a − bi − cj − dk; (3)

EQ-TARGET;temp:intralink-;e004;63;152jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2 þ d2

p
: (4)

Using the quaternion representation, an RGB image fðr; θÞ
defined in polar coordinates can be considered as a quatern-
ion-based model for color images, which is given as follows:

EQ-TARGET;temp:intralink-;e005;63;89fðr; θÞ ¼ fRðr; θÞiþ fGðr; θÞjþ fBðr; θÞk; (5)

where the functions fRðr; θÞ, fGðr; θÞ, and fBðr; θÞ are, respec-
tively, the red, green, and blue channels of the image.

According to the noncommutative property of quaternion
multiplication, there are two types of QGJFMs of order n
and repetition m, namely, the right-side moments defined by

EQ-TARGET;temp:intralink-;e006;326;697ϕright
n;m ¼

Z
2π

0

Z
1

0

fðr; θÞJnðα; β; rÞ expðμmθÞrdr dθ; (6)

and the left-side moments, which are given as follows:

EQ-TARGET;temp:intralink-;e007;326;643ϕleft
n;m ¼

Z
2π

0

Z
1

0

expðμmθÞfðr; θÞJnðα; β; rÞrdr dθ; (7)

where Jnðα; β; rÞ are the generic Jacobi radial polynomials.23

The real numbers α and β define a specific radial polynomial
family and μ is a unit pure quaternion. It can be used as
μ ¼ ðiþ jþ kÞ∕ ffiffiffi

3
p

. Due to the anti-involution property of qua-
ternion conjugation, the left-side and right-side transforms have
the following relationship:

EQ-TARGET;temp:intralink-;e008;326;539ϕleft
n;m ¼ −ϕright

n;−m: (8)

For the case of discrete image functions, Eqs. (6) and (7) cannot
be directly applied. The integrals of these equations have to be
replaced by summations and the discrete image function has to
be normalized inside the unit disk; this approach is known as the
zeroth-order approximation or direct method. This procedure is
briefly described below.

Let fðri;j; θi;jÞ be a discrete image function with spatial
dimensions M × N. Its right discrete quaternion moments
ϕright
n;m are given by

EQ-TARGET;temp:intralink-;e009;326;404ϕright
n;m ¼

XM−1

i¼0

XN−1

j¼0

fðri;j; θi;jÞJnðα; β; ri;jÞ expðμmθi;jÞ; (9)

where the discrete polar coordinates are expressed by

EQ-TARGET;temp:intralink-;e010;326;341ri;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2j

q
; ri;j ≤ 1; (10)

EQ-TARGET;temp:intralink-;e011;326;308θi;j ¼ arctan

�
yj
xi

�
; (11)

and they are transformed as follows:

EQ-TARGET;temp:intralink-;e012;326;257xi ¼ −1þ 2i
N − 1

; yj ¼ −1þ 2j
M − 1

; (12)

where i ¼ 0; : : : ; N − 1 and j ¼ 0; : : : ;M − 1.

3 Computation of the Quaternion Generic
Jacobi-Fourier Moments in Polar Pixels

In a previous analysis,31 it has been demonstrated that two types
of errors occur in the direct calculation method of orthogonal
moments, namely, geometric error and numerical integration
error. To increase the numerical accuracy calculation, Xin
et al.32 proposed an algorithm based on changing the shape
of the square pixels for a polar pixels scheme. Recently,
Camacho-Bello et al.25 proposed a recurrence relation to elimi-
nate the numerical instability of the orthogonal polynomials and
to compare with other methods in terms of invariance,
reconstruction error, and computation time. In terms of our

Journal of Medical Imaging 014004-2 Jan–Mar 2016 • Vol. 3(1)

Camacho-Bello et al.: Reconstruction of color biomedical images by means of quaternion. . .

Downloaded From: http://medicalimaging.spiedigitallibrary.org/ on 03/15/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



research in this section, a recurrence relationship for computing
the generic radial Jacobi polynomials will be used.26

3.1 Recurrence Relation of Jacobi Polynomials

The recurrence relation with respect to n is used to increase the
numerical stability for the computation of the shifted radial
Jacobi polynomials. The recursive relationship is given by
EQ-TARGET;temp:intralink-;e013;63;667

AnJnðα; β; rÞ ¼ ð2r − 1 − BnÞJn−1ðα; β; rÞ
− An−1Jn−2ðα; β; rÞ; (13)

where r ∈ ½0;1�, α − β > −1, β, α > 0, and the coefficients An
and Bn are computed as follows:

EQ-TARGET;temp:intralink-;e014;63;595An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4nðnþ α − βÞðnþ β − 1Þðnþ α − 1Þ
ð2nþ α − 1Þ2ð2nþ αÞð2nþ α − 2Þ ;

s
(14)

EQ-TARGET;temp:intralink-;e015;63;543Bn ¼
ðα − 1Þð2β − α − 1Þ

ð2nþ α − 1Þ½2ðn − 1Þ þ α − 1� : (15)

To start with the numerical computation, the Jacobi polynomials
of zero and first normalized orders are given by

EQ-TARGET;temp:intralink-;e016;63;481J0ðα; β; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðα; β; rÞ
b0ðα; βÞ

s
; (16)

EQ-TARGET;temp:intralink-;e017;63;434J1ðα; β; rÞ ¼ J0ðα; β; rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαþ 2Þβ
α − β þ 1

s �
αþ 1

β
r − 1

�
: (17)

The advantage of the recurrence relationships is that they can
diminish the computation time of the radial polynomials
because the calculation of factorials is not taken into account.
Moreover, using the recurrence relation, the computation accu-
racy of the n’th power of r (n > 21) is increased.

3.2 Proposed Scheme of Polar Pixels for
Quaternion Generic Jacobi-Fourier Moments

The unit disk of polar pixels scheme is uniformly divided along
the radial direction into U sections, with radial distance of
ru ¼ u∕U, where u ¼ 1: : : U. The number of polar pixels in the
u’th ring is Su ¼ ð2u − 1ÞV, with angles θuv ¼ ðv − 1Þ2π∕Su,
where v ¼ 1: : : Su and V is the number of sectors contained in
the innermost section. In practice, Xin et al.32 recommended to
set the value of V ¼ 4 and N∕2 ≤ U ≤ N for an N × N image.
Figure 1 shows the polar pixels scheme with V ¼ 4 and U ¼ 5.
The calculation of the QGJFMs in the framework of polar pixels
is performed by the summation of all sectors inside the unit disk.
For this calculation, Eq. (9) can be rewritten as

EQ-TARGET;temp:intralink-;e018;63;171ϕ̂right
n;m ¼

XU
u¼1

Xð2u−1ÞV

v¼1

f̂ðruv; θuvÞωnmðruv; θuvÞ; (18)

where f̂ðruv; θuvÞ is an approximation of the function fðri;j; θi;jÞ
defined over a set of concentric sectors Ωuv, and the factor
ωnmðruv; θuvÞ is given by

EQ-TARGET;temp:intralink-;e019;326;616ωnmðruv; θuvÞ ¼
ZZ

Ωuv

Jnðα; β; rÞ expðμmθÞrdr dθ: (19)

The integrals of Eq. (19) can be separated as

EQ-TARGET;temp:intralink-;e020;326;569ωnmðruv; θuvÞ ¼
Z

rðeÞuv

rðsÞuv

Jnðα; β; rÞrdr
Z

θðeÞuv

θðsÞuv

expðμmθÞdθ;

(20)

where rðsÞuv and rðeÞuv denote, respectively, the starting and ending
radii of the sectorΩuv, while θ

ðsÞ
uv and θðeÞuv denote the starting and

ending angles of the sector. A scheme of a polar pixel is shown
in Fig. 1(b). Using the Euler formula for quaternions, Eq. (20)
can be seen as follows:
EQ-TARGET;temp:intralink-;e021;326;454

ωnmðruv; θuvÞ ¼
�Z

rðeÞuv

rðsÞuv

Jnðα; β; rÞrdr
�

×
�Z

θðeÞuv

θðsÞuv

cosðmθÞdθ þ μ

Z
θðeÞuv

θðsÞuv

sinðmθÞdθ
�
:

(21)

Rewriting Eq. (21) in the next form produces

EQ-TARGET;temp:intralink-;e022;326;348ωnmðruv; θuvÞ ¼ IJnuv × ½Icosuv þ μIsinuv �: (22)

It is evident from Eq. (22) that three integrals can be obtained,
which can be expressed as

EQ-TARGET;temp:intralink-;e023;326;293IJnuv ¼
Z

rðeÞuv

rðsÞuv

Jnðα; β; rÞrdr; (23)

EQ-TARGET;temp:intralink-;e024;326;245Icosuv ¼
Z

θðeÞuv

θðsÞuv

cosðmθÞdθ; (24)

EQ-TARGET;temp:intralink-;e025;326;202Isinuv ¼
Z

θðeÞuv

θðsÞuv

sinðmθÞdθ: (25)

In order to solve the integral of Eq. (23), Camacho-Bello
et al.25 proposed to use a 10-point Gaussian quadrature rule,
along with the recurrence relationship with respect to the order
n for computing the generic radial Jacobi polynomials.

Typically, the aforementioned procedure is less accurate than
the direct method, but is numerically more stable for orders
greater than 21. Thus, the composite Gaussian quadrature
rule for numerical integration of the generic Jacobi radial poly-
nomials can be stated as

( )r   ,θuv uv
(s)(s)

( )r   ,θuv uv
(s)(e)( )r   ,θuv uv

(e)(e)

( )r   ,θuv uv
(e)(s)

( )r   ,θuv uv

(b)(a)

Fig. 1 (a) Polar pixel representation of an image and (b) polar pixel
sector Ωuv .
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EQ-TARGET;temp:intralink-;e026;63;752IJnuv ¼ rðeÞuv − rðsÞuv

2

X10
k¼1

ηkJn

�
α; β;

rðeÞuv − rðsÞuv

2
zk þ

rðeÞuv þ rðsÞuv

2

�
;

(26)

where ηk are weights and zk ∈ ½−1;1� are the points where the
function is evaluated. The values for ηk and zk are given in
Table 1.

The integrals of Eqs. (24) and (25) can be analytically calcu-
lated as follows:

EQ-TARGET;temp:intralink-;e027;63;643Icosuv ¼
(

1
jm ½sinðjmθðeÞuv Þ − sinðjmθðsÞuv Þ�; m ≠ 0

θðeÞuv − θðsÞuv ; m ¼ 0
(27)

EQ-TARGET;temp:intralink-;e028;63;591Isinuv ¼ 1

jm
½cosðjmθðsÞuv Þ − cosðjmθðeÞuv Þ�: (28)

3.3 Proposed Computation of Quaternion Generic
Jacobi-Fourier Moments

For the calculation of QGJFMs from the right-side transforma-
tion in a scheme of polar pixels, we have to represent f̂R, f̂G,
and f̂B as the components of an RGB image. These images can
be transformed to a scheme of polar pixels.20,25,26 Therefore,
fðr; θÞ from Eq. (5) can be replaced as

EQ-TARGET;temp:intralink-;e029;63;466f̂ðr; θÞ ¼ f̂Rðr; θÞiþ f̂Gðr; θÞjþ f̂Bðr; θÞk: (29)

Substituting Eq. (29) into Eq. (6) leads to
EQ-TARGET;temp:intralink-;e030;63;422

ϕ̂right
n;m ¼

XU
u¼1

Xð2u−1ÞV

v¼1

½f̂Rðr; θÞiþ f̂Gðr; θÞjþ f̂Bðr; θÞk�

× ωnmðruv; θuvÞ: (30)

Using the basic rules of Eq. (2), we can express the QGJFMs
as

EQ-TARGET;temp:intralink-;e031;326;752

ϕ̂right
n;m ¼ i

XU
u¼1

Xð2u−1ÞV

v¼1

f̂Rðruv; θuvÞωnmðruv; θuvÞ

þ j
XU
u¼1

Xð2u−1ÞV

v¼1

f̂Gðruv; θuvÞωnmðruv; θuvÞ

þ k
XU
u¼1

Xð2u−1ÞV

v¼1

f̂Bðruv; θuvÞωnmðruv; θuvÞ: (31)

As stated earlier, ωn;m can be represented by Eq. (22), and by
virtue of this relation, Eq. (31) takes the following form:
EQ-TARGET;temp:intralink-;e032;326;617

ϕ̂right
n;m ¼ i

XU
u¼1

Xð2u−1ÞV

v¼1

f̂Rðruv; θuvÞIuv½Icosuv þ μIsinuv �

þ j
XU
u¼1

Xð2u−1ÞV

v¼1

f̂Gðruv; θuvÞIuv½Icosuv þ μIsinuv �

þ k
XU
u¼1

Xð2u−1ÞV

v¼1

f̂Bðruv; θuvÞIuv½Icosuv þ μIsinuv �: (32)

At this point, we can again use the basic rules for quaternions
defined in Eq. (2). Then, distributing the integrals for both sine
and cosine, Eq. (32) can be written as follows:
EQ-TARGET;temp:intralink-;e033;326;462

ϕ̂right
n;m ¼ i

�XU
u¼1

Xð2u−1ÞV

v¼1

f̂Rðruv; θuvÞIuvIcosuv

þ μ
XU
u¼1

Xð2u−1ÞV

v¼1

f̂Rðruv; θuvÞIuvIsinuv
�

þ j
�XU
u¼1

Xð2u−1ÞV

v¼1

f̂Gðruv; θuvÞIuvIcosuv

þ μ
XU
u¼1

Xð2u−1ÞV

v¼1

f̂Gðruv; θuvÞIuvIsinuv
�

k
�XU
u¼1

Xð2u−1ÞV

v¼1

f̂Bðruv; θuvÞIuvIcosuv

þ μ
XU
u¼1

Xð2u−1ÞV

v¼1

f̂Bðruv; θuvÞIuvIsinuv
�
: (33)

Taking into account the proposed value for the quaternion μ, the
QGJFMs of an RGB image in polar pixels are expressed by
EQ-TARGET;temp:intralink-;e034;326;211

ϕ̂right
n;m ¼ i

�
Re½ϕ̂nmðf̂RÞ� þ

ðiþ jþ kÞffiffiffi
3

p Im½ϕ̂nmðf̂RÞ�
�

þ j
�
Re½ϕ̂nmðf̂GÞ� þ

ðiþ jþ kÞffiffiffi
3

p Im½ϕ̂nmðf̂GÞ�
�

þ k
�
Re½ϕ̂nmðf̂BÞ� þ

ðiþ jþ kÞffiffiffi
3

p Im½ϕ̂nmðf̂BÞ�
�
:

(34)

Finally,

EQ-TARGET;temp:intralink-;e035;326;80ϕ̂right
n;m ¼ Aright

n;m þ iBright
n;m þ jCright

n;m þ kDright
n;m ; (35)

Table 1 Weights (ηk ) and location of sampling points (zk ) for 10-point
Gaussian quadrature.

k ηk zk

1 0.0666713443 −0.9739065285

2 0.1494513492 −0.8650633667

3 0.2190863625 −0.6794095683

4 0.2692667193 −0.4333953941

5 0.2955242247 −0.1488743390

6 0.2955242247 0.1488743390

7 0.2692667193 0.4333953941

8 0.2190863625 0.6794095683

9 0.1494513492 0.8650633667

10 0.0666713443 0.9739065285
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where
EQ-TARGET;temp:intralink-;e036;63;741

Aright
n;m ¼−

1ffiffiffi
3

p fIm½ϕ̂nmðf̂RÞ�þ Im½ϕ̂nmðf̂GÞ�þ Im½ϕ̂nmðf̂BÞ�g;

Bright
n;m ¼Re½ϕ̂nmðf̂RÞ�þ

1ffiffiffi
3

p fIm½ϕ̂nmðf̂GÞ�− Im½ϕ̂nmðf̂BÞ�g;

Cright
n;m ¼Re½ϕ̂nmðf̂GÞ�þ

1ffiffiffi
3

p fIm½ϕ̂nmðf̂BÞ�− Im½ϕ̂nmðf̂RÞ�g;

Dright
n;m ¼Re½ϕ̂nmðf̂BÞ�þ

1ffiffiffi
3

p fIm½ϕ̂nmðf̂RÞ�− Im½ϕ̂nmðf̂GÞ�g:

(36)

4 RGB Image Reconstruction
The capacity of description of the QGJFMs is done by means of
its inverse transformation. According to the inverse quaternion
Jacobi-Fourier transform, an original RGB image fðr; θÞ can be
reconstructed by a finite number of QGJFMs, which is given by

EQ-TARGET;temp:intralink-;e037;63;545f̃ðr; θÞ ¼ f̃Aðr; θÞ þ f̃Bðr; θÞiþ f̃Cðr; θÞjþ f̃Dðr; θÞk;
(37)

where
EQ-TARGET;temp:intralink-;e038;63;488

f̃Aðr;θÞ¼Re½Ãðr;θÞ�− 1ffiffiffi
3

p fIm½B̃ðr;θÞ�

þ Im½C̃ðr;θÞ�þ Im½D̃ðr;θÞ�g;

f̃Bðr;θÞ¼Re½B̃ðr;θÞ�þ 1ffiffiffi
3

p fIm½Ãðr;θÞ�

þ Im½C̃ðr;θÞ�− Im½D̃ðr;θÞ�g;

f̃Cðr;θÞ¼Re½C̃ðr;θÞ�þ 1ffiffiffi
3

p fIm½Ãðr;θÞ�

− Im½B̃ðr;θÞ�þ Im½D̃ðr;θÞ�g;

f̃Dðr;θÞ¼Re½D̃ðr;θÞ�þ 1ffiffiffi
3

p fIm½Ãðr;θÞ�

þ Im½B̃ðr;θÞ�− Im½C̃ðr;θÞ�g; (38)

EQ-TARGET;temp:intralink-;e039;63;297Ãðri;j; θi;jÞ ¼
XL
n¼0

XL
m¼0

Aright
n;m Jnðα; β; ri;jÞ expðjmθi;jÞ;

B̃ðri;j; θi;jÞ ¼
XL
n¼0

XL
m¼0

Bright
n;m Jnðα; β; ri;jÞ expðjmθi;jÞ;

C̃ðri;j; θi;jÞ ¼
XL
n¼0

XL
m¼0

Cright
n;m Jnðα; β; ri;jÞ expðjmθi;jÞ;

D̃ðri;j; θi;jÞ ¼
XL
n¼0

XL
m¼0

Dright
n;m Jnðα; β; ri;jÞ expðjmθi;jÞ:

(39)

Note that f̃Bðr; θÞ, f̃Cðr; θÞ, and f̃Dðr; θÞ represent the red,
green, and blue components of the reconstructed color image,
respectively, and L is the maximum order of QGJFMs used
in the reconstruction. Typically, the reconstruction formula
has been used to recover the image information up to a certain
level of approximation.

4.1 RGB Image Reconstruction Error

In this section, a reconstruction metric based on the normalized
image reconstruction error (NIRE) is presented. It is defined as
the normalized square error between the input image fcðx; yÞ
and its reconstruction f̃cðx; yÞ. This error is presented in discrete
form for each channel c of the RGB image, and it is given by

EQ-TARGET;temp:intralink-;e040;326;679NIREc ¼
P

N
y¼1

P
M
x¼1 ½fcðx; yÞ − f̃cðx; yÞ�2P
N
y¼1

P
M
x¼1 f

2
cðx; yÞ

: (40)

The measure for the reconstruction error of a color image that
considers the three channels is given by

EQ-TARGET;temp:intralink-;e041;326;608MeanNIRE ¼ NIRER þ NIREG þ NIREB

3
: (41)

Also, we have assumed that the image sizes are M × N.

5 Comparison with Other Methods
The zero-order approximation is commonly used because of its
easy implementation. However, it requires replacing the double
integral by a double sum. Typically, this approximation during
the computation of the quaternion moments creates a poor
reconstruction in RGB images. For this reason, Karakasis
et al.30 proposed an alternative numerical approximation that
uses some recurrence relations in order to improve the perfor-
mance calculation. In this section, we compare the approach of
polar pixels with zero-order approximation and the numerical
approximation in terms of image reconstruction, reconstruction
error, and computation time. As in Ref. 30, we use the standard
image Lena with the quaternion orthogonal Fourier-Mellin
moments (α ¼ β ¼ 2). Figures 2 and 3 show the Lena image
reconstruction and the NIRE, respectively.

Since the computation time does not depend on image con-
tent, only one image is considered for the analysis. The code is
implemented using MATLAB® with a Sony Electronics Inc.
Model VAIO R Computer Notebook PC with Intel Core™i5-
2430M CPU 2.40 GHz processor with 4 GB of RAM.
Figure 4 shows the computation time of the different methods.
The zero-order approximation calculation has better times.
However, the scheme of polar pixels has reasonable computing
times with minimal reconstruction error.

6 Experimental Results
In this section, we present the reconstruction results obtained
using some color test images from optical microscopy and the
human retina. These RGB test images are shown in Fig. 5. Using
Eq. (38), we have reconstructed the three cases of test images.
The results are shown in Figs. 6(a), 6(b), and 6(c).The results for
the NIRE from the RGB test images are shown in Figs. 6(d),
6(e), and 6(f). To obtain these results, we have considered image
sizes of 512 × 512 pixels and α ¼ β ¼ 1, 2, 3, 4, 5.

6.1 Searching of α and β Parameters

As mentioned in Sec. 1, Bhatia and Wolf15 pointed out that there
is an infinite number of complete sets of orthogonal polyno-
mials, which are invariant to rotation and can be obtained from
the generic Jacobi polynomial formula. Each set is obtained by
the combination of the parameters α and β. Therefore, a set of
orthogonal moments could be chosen to fit specific applications.
We define the mean of Mean_NIRE as metric to quantitatively
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evaluate the best combinations of α and β. The mean value of
Mean_NIRE is given by

EQ-TARGET;temp:intralink-;e042;63;492Ψðα; β; pÞ ¼ 1

p

Xp
L¼1

MeanNIREðL; α; βÞ; (42)

where L is the maximum order of QGJFMs used in the
reconstruction of the input image and p is the cutting order. The
cutting order p can find the optimal parameters for moments of
low and high orders. In general, low-order moments represent
the global shape of an image, and high-order moments the
detail.5 The search space is restricted by α − β > −1 and the
sections with minimum values represent the neighborhood of
the best combinations of α and β. Figures 6(g), 6(h), and 6(i)
show the exhaustive searches performed for the RGB test
images with values of α ¼ 1: : : 10 and β ¼ 1: : : 10.

In general, image reconstruction has been commonly used to
describe how well an image can be retrieved by a small set of its
moments. Here, the interest is to discuss the results obtained in
each test case.

6.1.1 Yogurt bacteria image

As is shown in Fig. 6(g), the best values of the search are
located when α ¼ β. According to its NIRE graph of Fig. 6
(d), the tendency of error is to go down as the orderL is increased.
Moreover, the RGB image is completely reconstructed before the
order L ¼ 90. Figure 6(a) shows the RGB image reconstruction
when α ¼ β ¼ 1, which is the best value found in the search of
Fig. 6(g). It is clear that the reconstruction is not severely affected
by the Gaussian noise acquired during the registration of the
input image.

6.1.2 Human retina image

In this case, the search for the minimum values for the average
of the NIRE yields α ¼ β. The NIRE graph of the best values
found shown in Fig. 6(e) presents numerical oscillations and the
tendency of error after the order L ¼ 60 to increase. This behav-
ior is explained by the low contrast presented in the input image
of Fig. 5(b). As in the previous case, the best value in the search
of Fig. 6(h) is found when α ¼ β ¼ 1; the RGB image
reconstruction results are shown in Fig. 6(b). In spite of these
results, QGJFMs are capable of recovering the global informa-
tion of the image including some high frequencies.

6.1.3 Diatom image

In the third case, the best results of the search neighborhood are
when α ¼ β. Moreover, the RGB image reconstruction and

Zero-order
approximation

Numerical
approximation

Scheme of
polar pixels

L=100L=50L=20

Fig. 2 Lena image reconstruction of 512 × 512 pixels with different
methods for L ¼ 20, 50, 100.

Fig. 3 NIRE of Lena image with size 512 × 512 pixels for different
computation methods.

Fig. 4 Computation time of Lena image with size 512 × 512 pixels for
different computation methods.

Fig. 5 RGB test images from (a) yogurt bacteria, (b) human retina,
and (c) diatom. Yogurt bacteria and diatom are acquired using a
microscope in bright field illumination. In the case of the diatom, a
100× microscope objective has been used in oil immersion.
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NIRE with α and β best parameters present qualitatively and
quantitatively good results, respectively. As shown in Fig. 6(f),
NIRE decreases as L increases, reaching zero at L ¼ 150.
Unlike the prior case, the diatom image has a clear background
and the object of interest is clearly identified. Finally, the RGB

image reconstruction shown in Fig. 6(c) has α ¼ β ¼ 1, which
are the best parameters found in Fig. 6(i).

For all RGB test images, the best results are found when
α ¼ β, especially when α ¼ β ¼ 1, which would be the case
of the quaternion Legendre-Fourier moments.

(c(a) (b)

(e)

(i)

(f)

(h)

(d)

(j)

(g)

(k) (l)

L=60                  L=90                  L=120
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L=4                   L=16                   L=30 L=4                   L=16                   L=30
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Fig. 6 Results of the test images: (a), (b), and (c) RGB image reconstruction, (d), (e), and (f) RGB image
reconstruction error, (g), (h), and (i) searching of α and β parameters, and (j), (k), and (l) mean of PSNR.
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6.2 Noisy Image Sensitivity

Sensitivity to noise is a critical issue for quaternion moments.
We compare the best parameters of QGJFMs (α ¼ β ¼ 1) for
peak signal-to-noise ratio (PSNR) and their performance for
image reconstruction in the presence of noise, which is the
ratio between a signal maximum power and the power of the
signal noise, expressed in decibels. The PSNR for each channel
c of the RGB image is given by

EQ-TARGET;temp:intralink-;e043;63;657PSNRc ¼ 10 log10ð2552∕MSEcÞ; (43)

where the mean square error (MSEc) is defined as

EQ-TARGET;temp:intralink-;e044;63;615MSEc ¼
1

N ×M

XN−1

i¼0

XM−1

j¼0

½fcði; jÞ − f̃cði; jÞ�2: (44)

The measure for the PSNR of an RGB image that considers the
three channels is given by

EQ-TARGET;temp:intralink-;e045;63;541MeanPSNR ¼ PSNRR þ PSNRG þ PSNRB

3
: (45)

Figures 6(j), 6(k), and 6(l) show the Mean_PSNR result from the
RGB test images corrupted by an additive Gaussian noise. The
results of the graphs show that the QGJFMs when α ¼ β ¼ 1
remain unchanged for values L < 15, i.e., are resistant to
Gaussian noise for quaternion moments of low order.

7 Conclusions
We have introduced QGJFMs for color image description in the
scheme of polar pixels. We have proven a reconstruction algo-
rithm for measuring the capacity of the QGJFMs in retrieving
the features of some test RGB images. Also, we have a approach
for high precision and fast computation of QGJFMs compared
to other methods. Furthermore, the arrangement of polar pixels
and the recurrence relationship used for different polynomial
families improves the computation time and the reconstruction
error in the case of RGB frames with large sizes.

The three test images used here present interesting character-
istics. In the yogurt bacteria image, the background and object of
interest are near the original colors. However, the QGJFMs have
been able to recover all the information. In the case of the human
retina image, new QGJFMs have obtained global information
and the main high frequencies. Finally, for the diatom image,
the background is strongly different from the specimen; this
fact helps to practically recover all the RGB image. In general,
these results have been found using the α and β parameters
through the searching spaces for each particular case.
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