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Abstract: This study presents the exact Legendre–Fourier moments and a novel arrangement of polar pixels that allows
calculating orthogonal moments defined in a unit radius more accurately than traditional methods. This arrangement simplifies
implementation and preserves the values of the pixels of the image during the calculation of the moments. Moreover, the exact
Legendre–Fourier moments use the weighted substituted radial shifted Legendre polynomials as kernel, which has the ability to
accurately calculate the circular moments. Finally, the author presents a comparative analysis of the reconstruction error with
existing configurations and other families of circular moments. The results indicate that the mehod provides a significant
advantage.

1 Introduction
Orthogonal moments are widely used in pattern recognition, image
analysis, multimedia watermarking, and image retrieval [1]. The
most significant property of orthogonal moments is their ability to
characterise, evaluate, and manipulate information with minimum
redundancy [2]. However, inaccurate computation of orthogonal
moments may affect their capability. According to Liao and Pawlak
[3], two types of errors occur in the computation of circular
orthogonal moments: geometric errors and numerical integration
errors.

To minimise geometric errors, Xin et al. [4] proposed a more
accurate algorithm to compute circular orthogonal moments, where
the original image was mapped to a polar pixel scheme using third-
order bicubic interpolation introduced by Keys [5]. Even though
interpolation errors are of secondary importance compared to
discretisation errors, interpolation errors play a significant role in
determining the accuracy of the algorithm. In addition, this
algorithm is computationally expensive because the input image
needs to be interpolated to a new location in the polar pixel
configuration. Furthermore, this algorithm seeks new polar pixel
configurations in order to streamline the computation of circular
orthogonal moments with the aim to reduce reconstruction error
and promote invariance. Singh and Walia [6] proposed an
improved polar pixel configuration, which reduces the number of
polar pixels and computational time by 27.3%. Likewise, Liu et al.
[7] proposed an improved polar pixel scheme, which computes
only one-sixteenth of the unit disk. Fig. 1 shows a comparison of
the polar pixel configurations proposed by Xin et al. [4], Singh and
Walia [6], and Liu et al. [7]. 

In order to minimise numerical integration errors, Xin et al. [4]
solved the integral analytically using orthogonal polynomial
coefficients. However, this approach results in numerical instability
for higher order polynomials. Camacho-Bello et al. [8] used
recurrence relations and numerical integration to reduce numerical

integration errors and this approach was shown to be less accurate
but more numerically stable for higher order polynomials. Sáez-
Landete [9] recently showed that the configuration of Xin et al. [4]
and the use of recurrence relations improved the reconstruction
performance compared with the algorithm proposed by Upneja and
Singh [10] for fast, accurate computations of circular moments.

The polar pixel scheme proposed by Xin et al. [4] is widely
used in the computation of circular orthogonal moments [8, 11, 12]
as well as in applications such as shape feature extraction and
description [13], speech content authentication [14], reconstruction
of colour biomedical images [15], and colour image watermarking
[16]. However, this polar pixel scheme is dependent on numerical
interpolation, which repeats the information in some sectors. In
addition, this scheme results in poor representation of the image in
polar pixels, which in turn, affects the invariance of the moments to
rotation and scale.

Hence, it is important to improve the manner in which the polar
pixels are distributed in order to obtain a better description of the
image, which will greatly facilitate basic and detailed image
analyses. In basic image analysis, improving the polar pixel
configuration enables the extraction of some interesting image
features such as colour, sharp, and blur features whereas in detailed
image analysis, improving the polar pixel configuration enables the
extraction of visual information [17]. In addition, improved polar
pixel configurations can be used in generalised sampling
expansions such as the fractional Fourier transform [18].
Improving image reconstruction from circular orthogonal moments
will be useful for image super-resolution reconstruction, which
involves generating noise-free, blur-free, high-resolution images
from noisy, blurry, low-resolution input images [19]. Furthermore,
improved polar pixel configurations can enhance applications
where orthogonal circular moments are used such as synthetic
aperture radar image analysis [20, 21].

Owing to the importance of polar pixel configurations in image
reconstruction, in this work, a novel polar pixel configuration is
proposed based on concentric rings, where each ring is composed
of irregular-sized pixels, which eliminates numerical interpolation,
minimises information redundancy, improves rotation invariance
and scale invariance, and enhance image description. Previous
studies [22, 23] have also shown that Legendre polynomials, as
kernel functions of orthogonal moments, perform exceptionally
well for image reconstruction. Legendre polynomials are also used
to compute fractional-order orthogonal moments [24] and moment
invariants in the Radon space [25]. In addition, Legendre
polynomials are used to compute Cartesian moments [26, 27]

Fig. 1  Polar pixel configurations proposed by
(a) Xin et al. [4], (b) Singh and Walia [6], (c) Liu et al. [7]
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because these polynomials can compute the integral of the kernel
functions with high accuracy. Hence, in this work, the Legendre
polynomials are modified as weighted and substituted radial shifted
Legendre polynomials in order to compute orthogonal moments in
the new polar pixel configuration with high accuracy. Precise
computation of the kernel functions guarantees that the image
descriptors are linearly independent with minimal redundant
information. The proposed polar pixel configuration is also
compared with those of other researchers and the configurations
are assessed in terms of the reconstruction error, rotation
invariance, scale invariance, and their capability in reconstructing
images corrupted with Gaussian noise. It is believed that the
findings in this paper will be useful to those in the academia and
industry involved in advancing the mathematical concepts of image
reconstruction.

2 Proposed configuration
The image f

^
ru, θuv  in polar pixels, defined by Xin et al. [4] as a

set of concentric sectors Ωuv that are non-overlapping, forms
different configurations, as shown in Fig. 1. In this paper, the
author proposes a novel arrangement of polar pixels that is based

on placing a polar pixel at each point or pixel of the image in order
to discard the numerical interpolation step required in the above
configurations. To achieve this, the author considers an image
f ri j, θi j  with spatial dimensions N × M, where the polar
coordinates are expressed by

ri j = xi
2 + yj

2, ri, j ≤ 1 (1)

θi j = arctan yj
xi

(2)

and are transformed by

xi = 2i + 1 − N
N , yj = 2 j + 1 − M

M , (3)

where i = 0, …, N − 1, and j = 0, …, M − 1. Thus, we build the
polar pixels arrangement from the dimensions of the image
f ri j, θi j . We start by dividing the unit radius in N /2 concentric
rings, which are separated at 2u/N , u = 1, …, N /2 , as shown
in Fig. 2a. The pixels that are in the range

2 u − 1
N < ri j < 2u

N , (4)

form the sectors or polar pixels of each concentric ring u. Further,
the coordinates of the arrangement of polar pixels are given in
Algorithm 1 (Fig. 3), where Vu is the total number of pixels that are
in the concentric ring u. 

The function polar_pixels (u) of the proposed configuration and
different configurations are given in Fig. 4. The proposed
configuration ensures that all pixels in the image are contained in a
polar pixel. For any image of size N × N, the values Vu can be
calculated by the restriction of (4). Fig. 2b shows the proposed
arrangement of polar pixels for an image of 20 × 20 pixels. The
size of the polar pixels varies for each ring. In Fig. 2b, the size of
the polar pixels is given by

ru
2π
Vu

= 0.16, 0.16, 0.09, 0.12, 0.11, 0.12, 0.10, 0.10, 0.12,

0.10
(5)

where

ru = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
Vu = 4, 8, 20, 20, 28, 32, 44, 52, 48, 60

Each ring of Fig. 2a considers a certain number of points or
pixels. In the example presented, rings 3 and 4 both have 20 points,
and their size is 0.09 and 0.12, respectively. Xin et al. [4]
recommend that all polar pixels have the same size. However, it is
not necessary that the polar pixels have the same size as long as all
the image information is considered. In the proposed configuration,
the number of polar pixels varies for each concentric ring, this is in
order to assign each pixel of the image within the unit circle. Note
that the concentric rings shown in Fig. 2a match the polar pixels of

Fig. 2  Example of the proposed configuration
(a) Concentric rings in the distribution of pixels. (b) Proposed configuration of polar pixels

 

Fig. 3  Algorithm 1: Polar pixels coordinates
 

Fig. 4  Different configurations for Vu
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Fig. 2b. Accordingly, we can take numerical values of the image
for each image sector in polar pixels.

A synthetic image shown in Table 1 is used to demonstrate that
the proposed configuration considers all pixels of the image are
inside the unit circle. In addition, it is used to represent the
arrangement of polar pixels in different configurations. 

Fig. 5 shows the synthetic image with the polar pixel
arrangement of Liu et al. [7], Singh and Walia [6], Xin et al. [4]
and the proposed configuration. In the representation of different
configurations, the values of the corners 123, 134, 28, and 154 are
outside of the unit circle. Note that the Liu et al. [7] configuration,
loses the values 234, 65, 0, and 14 unlike Xin et al. [4]
configuration, where the values 234, 65, 0 and 14 repeats. On the
other hand, the Singh and Walia [6] configuration loses the values
234, 65, 14, 56, 255, 45 and repeats 91. The proposed
configuration is the only one that considers all the pixels within the
unit circle in its representation. Moreover, the results of Section 5
show that the proposed configuration with different polar pixel
sizes improves upon configurations that have similar sizes. 

On the other hand, the computation time of the polar pixel
configuration and the interpolation of the methods of Liu et al. [7],
Singh and Walia [6], Xin et al. [4], and the proposed configuration
are shown in Fig. 6. The algorithms were implemented in
MATLAB on a PC Intel® CoreTM i7-6500U 2.50 Hz, 8 GB RAM.
Note that the computation time of the proposed configuration is
better than the different configurations because it does not perform
an interpolation with the original image. 

3 Weighted substituted radial shifted Legendre
polynomials (WSRSLPs)
In this section, the author proposes a recurrence relation for the
WSRSLPs and a relation to calculate the kernel integral in an exact
way. The deduction comes from the Legendre polynomials, which
are given as follows:

nLn r = 2n − 1 rLn − 1 r − n − 1 Ln − 2 r , (6)

with L0 r = 1, L1 r = r. An important property of the Legendre
polynomials Ln r  is that they are orthogonal over [−1, 1], with

∫
−1

1

Ln r Lm r dr = 2
2n + 1δnm . (7)

Another important property is the integration of Legendre
polynomials, which is given by

∫ Ln r dr = Ln + 1 r − Ln − 1 r
2n + 1 (8)

In order for the Legendre polynomials to be used as kernel of
circular moments, they must be defined inside of the unit circle
where the orthogonality interval is defined in [0, 1].

With the help of Legendre polynomials, we can derive
WSRSLPs L^

n r , which can be obtained by the following
relationships:

L^
n r = 2 2n + 1 Ln 2r2 − 1 (9)

In the same way as the Legendre polynomials, we can obtain the
orthogonality condition, the recurrence relation and the integration
of WSRSLPs.

Table 1 6 × 6 synthetic image
123 45 67 32 21 134
221 234 29 63 65 89
129 212 234 73 98 141
56 91 83 69 84 198
73 0 58 45 14 189
28 255 245 64 7 154

 

Fig. 5  Polar pixel arrangement of the synthetic image
(a) The configuration of Liu et al. [7], (b) The configuration of Singh and Walia [6], (c) The configuration of Xin et al. [4], (d) Proposed configuration

 

Fig. 6  Computational times of different configurations of polar pixels
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Theorem 1: Weighted substituted radial shifted Legendre

polynomials are orthogonal over in the interval [0, 1] with the
weighted function 2 2n + 1

∫
0

1

L^
n r L^

m r r dr = δnm (10)

 
Proof: By substituting Ln 2r2 − 1 = L^

n r / 2 2n + 1  to (7), we
have

∫
−1

1

Ln r Ln r dr = ∫
0

1

Ln 2r2 − 1 Ln 2r2 − 1 4r dr

= ∫
0

1 L^
n r L^

m r 4r
2 2n + 1 dr

= 2
2n + 1∫0

1

L^
n r L^

m r r dr

= 2
2n + 1δnm

□
 

Lemma 2: The recurrence relation of the weighted substituted
radial shifted Legendre polynomials is given by

anL^
n r = 2r2 − 1 L^

n − 1 r − an − 1L
^
n − 2 r (11)

where

an = n
4n2 − 1 (12)

For the initial numerical values, the zeroth and first normalised
orders are, respectively, given by

L^
0 r = 2

L^
1 r = 6 2r2 − 1

 
Proof: By substituting Ln 2r2 − 1 = L^

n r / 2 2n + 1  to (6), we
have

nLn 2r2 − 1 = 2n − 1 2r2 − 1 Ln − 1 2r2 − 1
− n − 1 Ln − 2 2r2 − 1

nL^
n r

2 2n + 1 = 2n − 1
2 2n − 1 2r2 − 1 L^

n − 1 r

− n − 1 L^
n − 2 r

2 2n − 3
nL^

n r
2n + 1 2n − 1 = 2r2 − 1 L^

n − 1 r − n − 1 L^
n − 2 r

2n − 1 2n − 3
nL^

n r
4n2 − 1

= 2r2 − 1 L^
n − 1 r − n − 1 L^

n − 2 r
4 n − 1 2 − 1

□
 

Lemma 3: The integration of the weighted substituted radial
shifted Legendre polynomials can be given as follows:

∫ L^
n r r dr = 1

2 4n + 2
L^

n + 1 r
4n + 6 − L^

n − 1 r
4n − 2 (13)

 
Proof: By substituting Ln 2r2 − 1 = L^

n r / 2 2n + 1  to (8), we
have

∫ Ln 2r2 − 1 4r dr = Ln + 1 2r2 − 1 − Ln − 1 2r2 − 1
2n + 1

∫ L^
n r 4r

2 2n + 1 dr = 1
2n + 1

L^
n + 1 r
4n + 6 − L^

n − 1 r
4n − 2

∫ L^
n r r = 1

2 4n + 2
L^

n + 1 r
4n + 6 − L^

n − 1 r
4n − 2

□

4 Exact Legendre–Fourier moments
The arrangement of polar pixels is used for the fast and high-
precision calculation of the orthogonal moments defined in the unit
disk [8]. In this paper, WSRSLPs as the kernel of the circular
moments to implement the proposed configuration were used,
along with the ability to calculate the integral kernel accurately.
The general expression for exact Legendre–Fourier moments
(ELFMs) of order n and repetition m, for a given image function
f (r, θ) in polar coordinates, is given by

ϕn, m = ∫
0

2π∫
0

1

f r, θ Pnm r, θ r dr dθ, (14)

where Pnm r, θ  is the kernel function, which consists of two
separable functions sets: WSRSLPs L^

n r  and the exponential
Fourier factor exp jmθ .

The calculation of the ELFMs in the new arrangement of polar
pixels is performed by the summation of all sectors Ωuv. Therefore,
(14) can be rewritten as

ϕ
^
nm = 1

2π ∑
u = 1

U

∑
v = 1

Vu

f
^

ru, θuv ωnm ru, θuv (15)

where f
^

ru, θuv  is an approximation of the function f ri, j, θi, j
defined over a set of concentric sectors Ωuv and the factor
ωnm ru, θuv  is given by

ωnm ru, θuv = ∫ ∫Ωuv
L^

n r exp jmθ r dr dθ

= ∫
ruv

s

ruv
e

L^
n r r dr∫

θuv
s

θuv
e

exp jmθ dθ

= I1 × I2

(16)

where (ru
s , θuv

e ), (ru
s , θuv

s ), (ru
e , θuv

e ) and (ru
e , θuv

s ) denote the starting
and ending points of the sector Ωuv, where (ru, θuv) represent the
radius and angle, respectively, of each sector Ωuv. The calculation
for the integral of the WSRSLPs can be analytically calculated as

I1 =
L^

n + 1 ru
e − L^

n + 1 ru
s

2 4n + 6 4n + 2

−
L^

n − 1 ru
e − L^

n − 1 ru
s

2 4n − 2 4n + 2 ,
(17)

and the integral of the complex Fourier component is given by

I2 =
j

m exp − jmθuv
e − exp − jmθuv

s , m ≠ 0

θuv
e − θuv

s , m = 0
. (18)

5 Experiments and results
In this section, the configurations of Fig. 1 from four different
perspectives, representation and reconstruction of a synthetic
image, a 512 × 512 pixels image reconstruction, noisy image

4 IET Image Process.
© The Institution of Engineering and Technology 2018



reconstruction, and invariance to rotation and scale were compared.
Furthermore, the exact Legendre–Fourier moments with other
different families of circular moments all calculated in the
framework of polar pixels with the proposed configuration were
also compared. The test images are shown in Fig. 7. 

5.1 Improvement of image reconstruction

Image reconstruction can help determine how well an image may
be characterised by a finite set of its moments. According to
orthogonal theories, an original image f i, j  can be reconstructed
by an infinite number of ELFMs. The reconstructed discrete
distribution of the image is given by

f
~

i, j = ∑
n = 0

L

∑
m = − L

L
ϕ

^
nmLn ri j exp − jmθi j (19)

where f
~

i, j  is the reconstructed version of f i, j , and L is the
maximum order of ELFMs used in the reconstruction of the image.
Fig. 8 shows image reconstruction with the proposed configuration
and other configurations. 

NIRE is defined as the normalised mean square error between
the input image f i, j  and its reconstruction f

~
i, j , and it is used

for the performance analysis of orthogonal moments. Its discrete
form is

NIRE =
∑i = 0

N − 1 ∑ j = 0
M − 1 f

~
i, j − f i, j

2

∑i = 0
N − 1 ∑ j = 0

M − 1 f 2 i, j
, (20)

and the results are shown in Fig. 9. The improvements in Fig. 8 are
not very noticeable at the first glance; however, NIRE
demonstrates the superiority of the proposed configuration. 

5.2 Noisy image reconstruction

High resistance to noise is a property of low-order orthogonal
moments. The different configurations of polar pixels with the peak
signal-to-noise ratio (PSNR) were compared and the performance
of PSNR for image reconstruction of images was degraded by
Gaussian noise. PSNR is the ratio between the maximum power of
a signal and the power of the signal noise, and it is usually
expressed in decibels with the logarithmic scale. It can be
calculated as

PSNR = 10 log10
2552

MSE (21)

where MSE is the mean square error defined by

MSE = 1
N × M ∑

i = 0

N − 1
∑
j = 0

M − 1
f
~

i, j − f i, j
2 . (22)

Fig. 10 shows the test images degraded by noise. Also, PSNR of
the test images with noise are presented in Fig. 11. As in the case

Fig. 7  15 standard test images of size 512 × 512 pixels
 

Fig. 8  Test images reconstructed with ELFMs and L = 100 for different
configurations of polar pixels
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of NIRE, the proposed configuration provides better results in
resisting the Gaussian noise than other polar pixel configuration. 

5.3 Improvement of rotation and scale invariance

One of the most important properties of circular moments is the
invariant representation of the scaled and rotated object. If a
distorted image f r /k, θ − γ  is rotated by γ degrees and scaled by a
factor k, all ELFMs of the resulting image, ϕ

^
nm
(γ, k)

, are related with
the ELFMs of the original image by

ϕ
^
nm
(γ, k) = ϕ

^
nm e−imγ . (23)

Therefore, modulus ELFMs

ϕ
^
nm
(γ, k) = ϕ

^
nm , (24)

is invariant to scale and rotation. In the accurate calculation, it is
not required that (24) be normalised by the scaling factor k because
the unit circle is independent of the image. All scaled images
N × N k can be defined within the unit circle regardless of their

size, therefore the moment values are the same.
A measure to facilitate the comparison among different

orthogonal moment calculations is by normalised mean squared
error (NMSE) which is given as follows:

NMSE ϕ
^
nm , ϕ

^
nm
(γ, k) = 1

L2 ∑
n = 1

L

∑
m = 1

L ϕ
^
nm
(γ, k) − ϕ

^
nm

2

ϕ
^
nm

2 , (25)

where L2 is the number of ELFMs involved in the evaluation. In
Table 2, the NMSE with rotation angles of 55° and −135°, and
with scale changes of k = 0.75 and k = 1.25 are shown. For each
rotation angle and scale, the first 100 ELFMs (L = 10) are
calculated. It is clear that the proposed method greatly surpasses
different configurations in terms of its invariance to rotation and
scale. 

5.4 Comparisons with other families of circular moments

Recent work has introduced different families of circular moments
such as Zernike moments (ZMs, [2]), weighted radial shifted
Legendre moments [23], Pseudo-Zernike moments [28], Pseudo-
Jacobi–Fourier moments [29], Chebyshev–Fourier moments [30],
orthogonal Fourier–Mellin moments [31], radial-harmonic-Fourier
moments [32], and Bessel–Fourier moments [33] with the aim of
finding the circular moments that best represent an image.
However, they are calculated with zero-order approximation
(ZOA) affecting their ability description. Moreover, arrangement of
polar pixels has proved fast and high-precision compared to ZOA
[8]. In this section, ELFMs are compared with different families of
circular moments in terms of image reconstruction and NIRE; they
all calculated with the proposed configuration of polar pixels. The
results are shown in Fig. 12. 

6 Conclusions
In this paper, a novel approach for computation of ELFMs is
proposed. Exact calculation of the integral of WSRSLPs from (17)
removes numerical approximation errors; this is seen in Section
5.4, where the ELFMs are compared with other families of circular
moments using numerical integration. Moreover, a novel
configuration for the distribution of polar pixels is presented,
which facilitates implementation, is efficient in terms of image
reconstruction, and is resistant to noise. Furthermore, the actual
numerical values of the original image in the proposed
configuration are used, unlike configurations of Xin et al. [4],
Singh and Walia [6], and Liu et al. [7], which required numerical
interpolation to obtain the values of each polar pixel. The proposed
configuration demonstrates that it is not necessary for polar pixels
to have the same size as stated by Xin et al. [4]. Also, this

configuration can be implemented on other families of circular
moments, such as radial moments [34], quaternion colour moments
in polar pixels [35], moment invariants in the Radon space [25],
and fractional-order orthogonal moments [24].

Fig. 9  NIRE average of the test images for different configurations of
polar pixels

 

Fig. 10  15 standard test images corrupted by additive Gaussian noise of
zero mean and σ2 = 0.1

 

Fig. 11  dB average of the test images for different configurations of polar
pixels
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Table 2 Test of rotation and scale invariance with 15 standard images degraded by scale and angle changes
Xin et al. Singh and Walia Liu et al. Our configuration

Image name k k γ γ k k γ γ k k γ γ k k γ γ
0.75 1.25 55° −135° 0.75 1.25 55° −135° 0.75 1.25 55° −135° 0.75 1.25 55° −135°

woman darkhair 0.0074 0.0022 0.0993 0.1792 0.0321 0.0449 1.2726 1.2391 0.0050 0.0028 0.0953 0.1590 0.0040 0.0004 0.0197 0.0198
woman blonde 0.0031 0.0017 0.0386 0.1300 0.0036 0.0023 0.0529 0.1263 0.0030 0.0015 0.0391 0.1329 0.0001 0.0001 0.0002 0.0004
house 0.0114 0.0047 0.0556 0.3909 0.0142 0.0052 0.0517 0.4190 0.0126 0.0045 0.0560 0.3790 0.0003 0.0001 0.0010 0.0007
lake 0.0058 0.0025 0.0379 0.1519 0.0076 0.0029 0.0399 0.1502 0.0057 0.0036 0.0402 0.1239 0.0076 0.0002 0.0023 0.0027
jetplane 0.0130 0.0043 0.1394 0.2579 0.0115 0.0041 0.1300 0.2563 0.0104 0.0045 0.1283 0.2613 0.0002 0.0001 0.0008 0.0010
livingroom 0.0153 0.0119 0.2025 0.2542 0.0138 0.0192 1.1752 1.0747 0.0236 0.0157 0.8566 0.8859 0.0009 0.0003 0.0034 0.0022
walkbridge 0.0293 0.0288 0.0800 0.8395 0.0477 0.0112 0.1125 1.1018 0.0234 0.0173 0.0554 0.6986 0.0010 0.0002 0.0020 0.0010
Lena 0.0042 0.0020 0.1908 0.1631 0.0060 0.0026 0.1863 0.1577 0.0045 0.0017 0.1785 0.1593 0.0008 0.0002 0.0004 0.0005
cameraman 0.0088 0.0083 0.0368 1.2248 0.0061 0.0118 0.0774 1.8848 0.0047 0.0204 0.0559 2.1339 0.0016 0.0004 0.0069 0.0053
Barbara 0.0138 0.0098 0.0438 0.0660 0.0162 0.0126 0.0429 0.0821 0.0176 0.0108 0.0473 0.0784 0.0070 0.0011 0.0062 0.0038
peppers 0.0365 0.0506 0.3182 2.4258 0.0303 0.0074 0.1107 0.6718 0.2043 0.0880 0.6213 6.0141 0.0025 0.0006 0.0024 0.0022
Goldhill 0.0083 0.0313 0.1223 0.6511 0.0135 0.0102 0.1081 0.2891 0.0131 0.0092 0.0922 0.3411 0.0012 0.0002 0.0020 0.0014
mandril 0.3184 0.0994 3.4033 4.7199 0.0700 0.0308 1.2345 2.8218 0.0958 0.0253 1.7473 2.4138 0.0051 0.0008 0.0120 0.0092
pirate 0.0151 0.0101 0.0357 0.4443 0.0131 0.0062 0.0249 0.3261 0.0108 0.0111 0.0340 0.4734 0.0055 0.0002 0.0130 0.0038
boat 0.0208 0.0022 0.1025 0.2636 0.0144 0.0052 0.0864 0.2012 0.0158 0.0030 0.0997 0.2161 0.0003 0.0002 0.0006 0.0005
average 0.0341 0.0180 0.3271 0.8108 0.0200 0.0118 0.0118 0.7201 0.0300 0.0146 0.2765 0.9647 0.0025 0.0003 0.0049 0.0036

 

Fig. 12  NIRE average of the test images for different families of circular
moments with our configuration of polar pixels
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