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Abstract

The problem of finding a feasible solution to a linear inequality sys-
tem arises in numerous contexts. In González-Gutiérrez and Todorov
[6], an algorithm, called extended relaxation method, for solving the
feasibility problem has been proposed by the authors. Convergence of
the algorithm has been proven. Later on, we have proved [8] linear
convergence of a class of extended relaxation methods depending on a
parameter. In this paper, we shrink this class of extended relaxation
methods to just one, generalizing the step iteration. We prove conver-
gence and investigate the rate of convergence. Numerical experiments
have been provided, as well.

1 Introduction

We deal with linear semi-infinite systems (LSIS’s for short) of the form:

σ = {a′tx ≥ bt, t ∈ T} (1)

where, T is an arbitrary nonempty index set, x ∈ R
n, a : T → R

n and
b : T → R are arbitrary mappings. We denote by F the feasible set of σ.
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One of the central problems of linear semi-infinite systems is to find a
solution of this type of systems (called feasibility problem) for the case of
ordinary systems (finite number of constraints and variables), this problem
is equivalent to the Linear Programming Problem, however, this equivalence
disappears when the number of constraints or variables is infinite, so, the
numerical methods solving LSIS are, to some extent, independent of the
methods for problems of semi-infinite linear programming ([4]).

Numerical methods for some kind of LSIS in R
(T ) (the space of general-

ized sequences) arising in economic theory, which are called linear systems
differences, can be found in [11]. In [5] the extended elimination method of
Fourier is studied, this, from an external representation of some closed set
(an external representation of the projection of the feasible set by means of a
system), this can be F , in a certain sense, a smaller system is obtained. The
extended Fourier method is important in the theory of linear semi-infinite
systems (used in some proofs [5]). Moreover, about of the theoretic study
of LSIS, [5], the well-known representation Theorem of Motzkin is extended
to LSIS when the feasible set is written as a sum of a polytope (convex hull
of a finite set) and of a finitely generated convex cone, which is an internal
representation of F . The constructive proof of this result (representation
Theorem of Motzkin) can be seen as a method solving LSIS.

In the present paper, for a given LSIS’s, σ, , we assume various initial
conditions. At the beginning, that at 6= 0n for all t ∈ T , so, each inequality
represents a closed half-space. Furthermore, we suppose that F is not empty.

Considering xk /∈ F, for some k ∈ N, the usual method for solving the
feasibility problem, is an iterative process, where the next iteration is found
as follows:

xk+1 = xk + λµ
a

‖a‖
,

where µ is the distance from xk fo the set F , λ ∈ R is a given parameter
of relaxation and a is a certain vector in R

n. The projection algorithm
reaches its goal with any special choice of the whole family of parameters, by
performing projections onto different sets on each iteration step. In recent
papers (see [8], [6], [9] and [7]) the authors have investigated this class of
methods of projections which work with a fixed value of λ ∈ (0, 2], as a
relaxation parameter during the whole process and numerical reports about
the performance of the whole class of algorithms depending on the fixed
parameter λ in each iteration were given.

In this work we deal with a more general relaxation process, that those
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appearing in [7] and [8], in the sense that the parameter λ appearing in
the Algorithm 2 is chosen as one parametric function λ : R → [ν, 2], with
ν ∈ (0, 2) where λ = λ (r), we denote λr = λ(r), for short, in each iteration
r = 0, 1, 2, . . .. On the basis of this scheme, first, we prove the convergence of
the algorithm and then, we show that the algorithm has linear convergence.

The combination of the different values of parameters in each iterations,
significantly increase the algorithm performance and better numerical results
that those which appeared in [7] are obtained.

The paper is organized as follows, in Section 2, we present the procedure
for finding a feasible solution of σ, and we prove the convergence under the
assumptions established above. In Section 3, we present the theorems that
guaranteeing the linear convergence of the method. Section 4, presents a
numerical treatment with some examples.

2 Projection algorithm and analysis of con-

vergence

In this section we present the general relaxation algorithm depending on a
different λr, for each step r = 0, 1, 2, . . . and we establish the main result of
this work.

Algorithm 1 Modified extended relaxation algorithm for the feasibility prob-
lem:

1. Choose the parameters M > 2 and β > 0; choose an arbitrary vector
x0 ∈ R

n. Set the iteration index r = 0, and choose λr ∈ [ν, 2] with
ν ∈ (0, 2).

2. Minimize the slack function g(t, x) = a′tx − bt at xr, finding ur =
inft∈T g(t, xr). If ur ≥ 0, stop (xr ∈ F ). Otherwise, take the index set
Tr = {t ∈ T |g(t, xr) < 0} (indexes of violated inequalities by xr).

3. Set βr = β and consider the global optimization problem

sup

{

bt − a′tx
r

‖at‖
, t ∈ Tr

}

= µr. (2)
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4. Furthermore, find one βr approximation, εr, of the solution, µr, of the
problem (2) (µr − βr < εr ≤ µr) . If βr < εr(M − 1), then

µr

M
< εr :=

btr − a′trx
r

‖atr‖
≤ µr, for some tr ∈ Tr,

and choose xr+1 = xr + λrεr
atr

‖atr‖
. Replace r by r + 1 and loop to step

2. If not, set βr = βr/2 and go to the step 4.

Remark 2 In [7], it has been shown that in the algorithm εr always exists
for all r ∈ N and it takes finite values different from zero.

The proof of the convergence for the case λr = λ fixed for each r =
0, 1, 2, . . . has been given in [7]. In the present work, we prove the convergence
of the algorithm for the more general case, when λr ∈ [ν, 2] with a fixed
ν ∈ (0, 2) for r = 0, 1, . . ..

The following result has been proven in a similar way, as it was done in
Theorem 3, presented in [7].

Theorem 3 Let σ be a consistent system such that dimF = n. Given an
initial point, x0 ∈ R

n and a fixed real number ν, such that ν ∈ (0, 2). If for
each r = 0, 1, 2, . . . we chose an arbitrary λr ∈ [ν, 2], the Algorithm 1 either
ends after a finite number of steps, or generates an infinite sequence, {xr},
converging to some element of F .

Proof. Our proof starts with the observation that if the sequence is finite
and the last point belongs to F then we finish. It remains to prove that the
convergence holds if we assume that {xr} is an infinite sequence of infeasible
points.

For each t ∈ T we denote Ht = {x ∈ R
n | a′tx = bt}. We have µr > 0, for

all r ∈ N, i.e., xr /∈ Htr , then the point xr+1 is along the vector atr starting
from xr. The distance between the two points is λrεr.

By hypothesis, there exist z ∈ R
n and δ > 0 such that the open ball

Bδ(z) of center z and radius δ satisfies

Bδ(z) ⊂ F ⊂ {x ∈ R
n | a′trx ≥ btr}, r = 1, 2, . . .

and ρtr :=d(z,Htr) ≥ δ.
By construction, the line determined by xr and xr+1 is orthogonal to

Htr . Let hr be the distance from z to that line. Consider the affine hull of
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{xr, xr+1, z}. We elect a coordinate system in this hyperplane, with abscises
axis, the line throughout the points xr and xr+1, directed in that way, and
ordinates axis, the perpendicular to the line throughout the points xr and
xr+1, directed in such a way that z belongs to the first orthant. With this
oriented system, the coordinates of the points xr , xr+1 and z are (−εr, 0),
((λr − 1)εr, 0) = (ξrεr, 0), where λr − 1 = ξr ∈ (−1, 1], and (ρtr , hr), respec-
tively, with hr ≥ 0 (the case when the dimension of the affine hull is 1 and
hr = 0 is trivial). Then

‖xr − z‖2 − ‖xr+1 − z‖2 =
[

(ρtr + εr)
2 + h2

r

]

−
[

(ρtr − ξrεr)
2 + h2

r

]

= (1− ξ2r )ε
2
r + 2(1 + ξr)ρtrεr.

Hence, for r ∈ N, we have

0 ≤ ‖xr+1 − z‖2 = ‖xr − z‖2 − (1− ξ2r )ε
2
r − 2(1 + ξr)ρtrεr.

Since −ρtr ≤ −δ we obtain

0 ≤ ‖xr+1 − z‖2 ≤ ‖xr − z‖2 − (1− ξ2r )ε
2
r − 2(1 + ξr)δεr.

So, we can consider the above inequalities for the first r − 1 terms, i.e., for
each k = 0, . . . , r − 1

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − (1− ξ2k)ε
2
k − 2(1 + ξk)δεk,

written in a different way,

‖xk+1 − z‖2 − ‖xk − z‖2 ≤ −(1− ξ2k)ε
2
k − 2(1 + ξk)δεk.

Adding these inequalities for k = 0, . . . , r − 1 we get

r−1
∑

k=1

(

‖xk+1 − z‖2 − ‖xk − z‖2
)

≤ −
r−1
∑

k=1

(1− ξ2k)ε
2
k − 2δ

r−1
∑

k=1

(1 + ξk)εk. (3)

In the right hand we have a telescopic series

r−1
∑

k=1

(

‖xk+1 − z‖2 − ‖xk − z‖2
)

= ‖xr − z‖2 − ‖x0 − z‖2. (4)
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As a result, from (3) and (4),

‖xr − z‖2 − ‖x0 − z‖2 ≤ −
r−1
∑

k=0

(1− ξ2k)ε
2
k − 2δ

r−1
∑

k=0

(1 + ξk)εk,

whereby,

2δ
r−1
∑

k=0

(1 + ξk)εk ≤
r−1
∑

k=0

(1− ξ2k)ε
2
r + 2δ

r−1
∑

k=0

(1 + ξk)εk ≤ ‖x0 − z‖2,

so that,
r−1
∑

k=0

(1 + ξk)εk ≤
1

2δ
‖x0 − z‖2.

Since ξk = λk − 1, by hypothesis ν ≤ λk for a fixed value ν ∈ (0, 2), then

r−1
∑

k=0

νεk ≤
r−1
∑

k=0

λkεk ≤
1

2δ
‖x0 − z‖2, (5)

so
r−1
∑

k=0

εk ≤
1

2δν
‖x0 − z‖2,

If we consider the sequence ηr−1 =
∑r−1

k=0 εk, and the constant K =
1

2νδ
‖x0 − z‖2, we have ηr−1 ≥ 0 for all r ∈ N, then 0 ≤ limr ηr ≤ K, i.e.,

the sequence {ηr} is bounded and increasing, whereby it converges. Hence,
∑∞

r=0 εr converges as well (and limr εr = 0).
Since, in Step 4 of the algorithm, we have chosen εr such that 0 < µr

M
< εr,

i.e., 0 < µr < εrM , we get limr µr = 0.
From (5) we have

r−1
∑

k=0

λkεk ≤
1

2δ
‖x0 − z‖2,

but, in Step 4 of the algorithm, we have

λkεk = ‖xr − xr+1‖,

so
r−1
∑

k=0

‖xr − xr+1‖ ≤
1

2δ
‖x0 − z‖2
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and then the series
∑∞

r=0 ‖x
r − xr+1‖ converges. Therefore,

∑∞
r=0(x

r −xr+1)
is absolutely convergent (see Th. 26.7 [2]), and, limr x

r = x̂, for some x̂ ∈ R
n.

Finally, we will show that x̂ ∈ F . For any t ∈ T , and for all r ∈ N we
have

bt − a′tx
r

‖a′t‖
≤

{

µr, t ∈ Tr,
0, otherwise.

Taking limit in the above relation when r →∞, we get
bt−a′

t
x̂

‖a′
t
‖

≤ 0, for all

t ∈ T , and this proves that x̂ ∈ F .

3 Rate of convergence of the algorithm

In this section, it is requiered that each iteration, r ∈ N, λr ∈ [ν, 2] with
ν ∈ (0, 2). So we show that Algorithm 1 has the rate of convergence linear.
This fact is established in Theorem 7. Before to prove it, several statements
along with some previous lemmas are presented.

Let us consider the sequence {xr} generated by the algorithm described
in Section 2. Together with conditions in Theorem 3, we suppose some
additional conditions on the nominal data at and bt.

Let us denote by B = inf{‖at‖ : t ∈ T} ≥ 0 and N = sup{‖at‖ : t ∈
T} ≤ ∞, respectively.

Lemma 4 In the definition of µr = sup
{

bt−a′
t
xr

‖at‖
: t ∈ Tr

}

in (2) we can

replace Tr with T for any r ∈ N.

The following result, Lemma 2.1 from [1], will be used in Theorem 7.

Lemma 5 Let λ ∈ [0, 2] and x, y be two points in R
n separated by the

hyperplane H = {x ∈ R
n|a′x = b}, such that a′x < b and a′y ≥ b. Then

∥

∥x+ λ
(

x´− x
)

− y
∥

∥

2
≤ ‖x− y‖2 − λ (2− λ)

∥

∥x´− x
∥

∥

2
, (6)

where x´ is the orthogonal projection of x on H. The equality holds if λ = 0,
or λ = 2 and y ∈ H.

We need of a statement similar to Lemma 1 presented in [10].

Lemma 6 If intF 6= ∅, N < ∞ and B > 0, then there exists a constant
0 < γ < 1 such that µr ≥ γd(xr, F ) for all r = 0, 1, 2, ... .
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Proof. We assume, temporarily, that 0n ∈ intF. Therefore, there exists
δ > 0 such that Bδ(0) ⊂ F, which implies that d(0n, Ht) ≥ δ for any t ∈ T,
i.e., −bt/‖at‖ ≥ δ for all t ∈ T. Hence, there exist α > 0 satisfying

−bt ≥ δB = α for all t ∈ T. (7)

For a fixed r ∈ N; let be xr ∈ {xk}, and yr be the point in F such that
‖xr − yr‖ = d(xr, F ), i.e., yr is the nearest point of F to xr. It is well known
that the inequality (yr − xr)′z ≥ (yr − xr)′yr is a consequence of the system
(1). By the Farkas’s Lemma

(

yr − xr

(yr − xr)′yr

)

∈ cl cone

{(

at
bt

)

, t ∈ T,

(

0n
−1

)}

.

Then, for a certain sequences {βj
r} ⊂ R

(T )
+ and {(βj

r)0} ⊂ R+, we can write

(

yr − xr

(yr − xr)′yr

)

= lim
j

{

∑

t∈T

(

βj
r

)

t

(

at
bt

)

+
(

βj
r

)

0

(

0n
−1

)

}

.

Thereby

yr − xr = lim
j

∑

t∈T

(

βj
r

)

t
at, (8)

and

(yr − xr)′yr = lim
j

(

∑

t∈T

(

βj
r

)

t
bt −

(

λj
r

)

0

)

. (9)

Therefore,

lim
j

(

∑

t∈T

(

βj
r

)

t
a′ty

r

)

− lim
j

(

∑

t∈T

(

βj
r

)

t
bt −

(

βj
r

)

0

)

= 0.

As (βj
r)t ≥ 0 and a′ty

r − bt ≥ 0, for all t ∈ T,

lim
j

(

βj
r

)

0
= 0, (10)

and

lim
j

(

∑

t∈T

(

βj
r

)

t
(a′ty

r − bt)

)

= 0. (11)
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We know that xr → x̄ and ‖yr − xr‖ → 0, therefore L = sup{‖yr‖ : r =
0, 1, ...} < +∞ . From (7) we have

∑

t∈T

(

βj
r

)

t
α ≤ −

∑

t∈T

(

βj
r

)

t
bt, , for all j = 0, 1, 2, ...,

then α lim infj
∑

t∈T

(βj
r)t ≤ lim infj

(

−
∑

t∈T

(βj
r)t bt

)

, so

α lim inf
j

∑

t∈T

(

βj
r

)

t
≤ − lim sup

j

∑

t∈T

(

βj
r

)

t
bt (12)

and by (10) and (9) we have

− lim sup
j

∑

t∈T

(

βj
r

)

t
bt = (xr − yr)′yr, (13)

so, by (12) and (13) we have

lim inf
j

∑

t∈T

(

βj
r

)

t
≤ α−1L ‖xr − yr‖ . (14)

By (8), (11), (14) and Lemma 4 we have

‖yr − xr‖2 = lim
j

∑

t∈T

(

βj
r

)

t
a′t(y

r − xr)

= lim
j

(

∑

t∈T

(

βj
r

)

t
(a′ty

r − bt) +
∑

t∈T

(

βj
r

)

t
(bt − a′tx

r)

)

≤

(

lim inf
j

∑

t∈T

(

βj
r

)

t

)

µr‖at‖

≤ α−1L ‖xr − yr‖µr‖at‖

≤ α−1LN ‖xr − yr‖µr,

then
α

LN
‖xr − yr‖ ≤ µr,

on the other hand
α

(L+ 1)(N + 1 + δ)
<

α

LN
.
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Letting γ = α
(L+1)(N+1+α)

we get γ ∈ (0, 1) such that

γ ‖xr − yr‖ ≤ µr, for all r = 0, 1, ... ,

when 0n ∈ intF. If not, suppose that z is in the interior of F. Define Fz :=

{x ∈ R
n : a′tx ≥ bt − a′tz, t ∈ T}, and µr(x, z) := sup

{

bt−a′
t
x−a′

t
z

‖at‖
: t ∈ Tr

}

.

As the origin is in the interior of Fz, we can prove that µr(x
r − z, z) ≥

γd(xr − z, Fz) for all r = 0, 1, 2, ... . The above lemma follows from the fact
µr = µr(x

r − z, z) and d(xr, F ) = d(xr − z, Fz).
We would like to mention that the constants δ, N, B and L depend only

on the nominal data and the initial point of the algorithm.

Theorem 7 Let λr ∈ [ν, µ], with (0, 2) ∋ ν < µ ∈ (0, 2) for all r =
0, 1, 2, . . .. If intF 6= ∅, N < ∞ and B > 0, then there exist M > 2,
0 < θ < 1 and x̄ ∈ F such that x̄ = limr x

r and ‖xr − x̄‖ ≤ θr‖x0 − x̄‖ for
all r big enough.

Proof. From the definition of εr, we have εr = ‖xr − xŕ‖, where xŕ is the
orthogonal projection of xr on the hyperplane Htr . We know that for every
r = 0, 1, ...,

εr >
µr

M
. (15)

If we replace x by xr, y by yr and λ by λr in the inequality (6), from Lemma
5, Lemma 6 and the fact ‖xr+1 − yr+1‖2 ≤ ‖xr+1 − yr‖2, we get

‖xr+1 − yr+1‖2 ≤ ‖xr+1 − yr‖2 ≤ ‖xr − yr‖2 − λr (2− λr) ‖x
r − xŕ‖2

= ‖xr − yr‖2 − λr (2− λr) ε
2
r

≤ ‖xr − yr‖2 −
λr (2− λr)µ

2
r

M2

≤ ‖xr − yr‖2 −
λr (2− λr) γ

2

M2
‖xr − yr‖2

= ‖xr − yr‖2(1− λr (2− λr) γ
2M−2). (16)

1 ≥ λr (2− λr) ≥ min [ν (2− ν) , µ (2− µ)] = ζ > 0, for each r = 0, 1, ... .

Letting 0 < σ = (1 − ζγ2M−2)
1

2 < 1 (choosing M large enough) and taking
into account (16) repeatedly, we have

‖xr+1 − yr+1‖ ≤ σr+1‖x0 − y0‖.
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Since x̄ and xr are in the ball B‖xr−yr‖(y
r) for each r = 0, 1, 2, ..., we obtain

1

2
‖xr+1 − x̄‖ ≤ ‖xr+1 − yr+1‖ ≤ σr+1‖x0 − y0‖ ≤ σr+1‖x0 − x̄‖,

which proves the theorem for any σ < θ < 1.

4 Experimental test

The current investigation involves a variation of the parameter λr for each
r = 0, 1, . . . . We consider three examples. The first one, Example 8, is from
previous experiments when λr has been considered fixed, see [8]. The next
test problem, Example 9, we have proposed, is an usual problem appearing
in the study of linear inequality systems. In these examples, for all x, y ∈ F
and for the initial guess, x0, we have ‖x − y‖ ≪ d(F, x0). With this, we
try to illustrate what happens if the initial point is not that close to the
feasible set. The last test problem, Example 10, distinguishes from the first
two ones, because the index set, in the description of the feasible set, involves
two indexes. It is a particular case of a system which appears in [4].

Algorithm 1 was coded in MATLAB. For the first two examples, we
use the fminbnd script for minimizing the slack function (Step 2), whereas
in the last example we use the fmincon,script dealing with optimization
problems of multivariate functions. We need this due to the fact that the
relaxation method uses these routines for solving the global optimization
problem appearing in Step 2. In the three examples, the routine finishes
when inft∈T g(xr, t) ≥ ǫ, considering ǫ, as a tolerance, that we establish as
ǫ = 1× 10−8.

The initial guess, x0, in Example 8 was taken as it was reported in [8],
whereas in the remaining two examples it was randomly generated. Also,
we establish the value of the parameters, β and M, as β = 1 × 10−4, and
M = 1000.

In order to get an idea of the performance of Algorithm 1, with respect to
previous ones, we classify the results in each example in two different cases.
The first one, is devoted to the case when the parameter of relaxation λ
remains constant within the interval (0, 2], and the other case is when this
parameter is chosen randomly in each iteration within the same range, under
the conditions given in Theorem 3.

Tables 6, 8 and 11, concentrate the results corresponding to the analysis
of fixed values of λ in the implementation. The first column presents the
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λ value considered, while the second, denoted by iter, shows the number
of iterations used by the implementation. The third column presents the
last approximation, where the condition inft∈T g(xr, t) ≥ ǫ has been reached.
Finally, the fourth column indicates if the last point is either an exact feasible
solution, i.e. when inft∈T g(xr, t) > 0, or it is an ǫ−feasible solution, i.e. when
inft∈T g(xr, t) ≥ ǫ has been attained.

Tables 7-10, 2-5 and 12-15 show the results for different values of the
parameter λ.

All experiments were carried on a Workstation of Intel(R) Xeon(R) CPU
E5-2667 0 @ 2.90 GHz 2.90 GHz processor, 12 GB of RAM and Windows 7
operating system. Figures 1-2 show the feasible set (region in blank), for the
first two examples.

4.1 Tests with fixed and random values of λr

Example 8 The next problem under our consideration is

σ =
{

2tx1 −
(

3t2 − 3
)

x2 ≥ −2
(

t4 + 3
)

: t ∈ [−π, π]
}

.

With the initial guess x0 = (34.368772, 82.066698)′ , Tables 1-8 show the
efficiency of the methods and illustrate the effect of λ, we mentioned that in
all cases the stopping criteria inf gt∈T (x

r, t) was positively satisfied, i.e. we
had exact solutions.

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 1: The feasible set F of the Example 8.
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λ iter x̂

0.1 339 (0.391963,−0.044444)′

0.4 74 (0.391925,−0.044544)′

0.7 35 (0.391315,−0.046121)′

1.0 15 (0.399966,−0.002977)′

1.2 8 (−0.366915, 0.097708)′

1.5 10 (−0.346993,−0.027652)′

1.8 16 (−0.062166, 0.308286)′

2.0 97 (0.069442,−0.186739)′

Table 1: Reports for Example 8 where fixed values of λr are considered.

λ ν iter x̂
0.0100
0.401225
0.509657
1.235929 0.01 7 (−3.986189510402, 0.130455699566)′

0.951845
0.709802
1.663349

Table 2: Reports for Example 8 with ν = 0.01.

λ ν iter x̂
0.5000
1.893895 0.5 6 (−3.451416941731,−0.199954327799)′

1.024976

Table 3: Reports for Example 8 with ν = 0.5.

λ ν iter x̂
1.000000

1 2 (−1.087986291188, 2.495442730177)′
1.243525

Table 4: Reports for Example 8 with ν = 1.0.
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λ ν iter x̂
1.500000
1.628754
1.920359 1.5 6 (−0.419092799267, 3.376048821209)′

1.627141
1.907142

Table 5: Reports for Example 8 with ν = 1.5.

Example 9 In this example, the test problem is in R
2 correspond to the next

system:

σ =
{(

20− 30t2
)

x1 + (60t+ 20)x2 ≥ −4t3 − 3t4 + 18t2 − 16 : t ∈ [−1.1, 1.7]
}

.

We show the efficiency of the methods and illustrate the effect of λ. The
initial guess is x0 = (53.610032,−33.575231)′ .

Figure 2: The feasible set F of the Example 9.

Results about the above example are summarized in Tables 6-10. Table 6,
show that for λr values corresponding to 0.1 and 0.5 when the stopping crite-
ria was satisfied we had ǫ−solutions, note the negative value of the marginal
function, whereas in Tables 7-10 the method always finished with an exact
feasible solution, because inf gt∈T (x

r, t) > 0 as establish in Step 2 of the Al-
gorithm 1.
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λ iter x̂ gt

0.1 480 (0.81505979, 0.383076148)′ −9.15× 10−09

0.5 68 (0.639255031, 0.282980495)′ −8.46× 10−09

1.0 10 (0.542531751, 0.22791043)′ 4.44× 10−16

1.5 20 (−0.823514404, 0.066059073)′ 0.0156

2.0 592 (−0.803878176, 0.077015633)′ 0.0369

Table 6: Reports for Example 9 considering fixed values of λr.

λ ν iter x̂
0.1

1.429787
1.313208
0.163847
0.230732
0.707239
1.108642
1.343447
0.874476 0.1 17 (−0.819929361, 0.076496562)′

1.657964
1.464882
1.940434
1.109534
0.717777
0.300695
1.260821

Table 7: Reports for Example 9 starting with ν = 0.1.
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λ ν iter x̂
0.5

1.668203
1.135179
0.636235
0.899707 0.5 10 (−0.787758587893,−0.010860426097)′

0.730485
0.921508
1.160128
1.290714

Table 8: Reports for Example 9 starting with ν = 0.5.

λ ν iter x̂
1

1.668203
1.135179
0.636235
0.899707 1.0 10 (−0.644373579970,−0.056080101579)′

0.730485
0.921508
1.160128
1.290714

Table 9: Reports for Example 9 starting with ν = 1.0.
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λ ν iter x̂
1.5 1.731225

1.61202 1.712175
1.833916 1.730458
1.922196 1.88508
1.672231 1.661236
1.89026 1.89237
1.837666 1.735679 1.5 25 (−0.151268457014,−0.049619232160)′

1.503358 1.517881
1.801085 1.587937
1.693386 1.860879
1.957996 1.736743
1.500576 1.576361

Table 10: Reports for Example 9 starting with ν = 1.5.

Example 10 Consider the system with n = 3 and T given by T = {t ∈
R

2 |t1 ∈ (1,∞), t2 ∈ [−3, 3]} that is a particular case of the system given in
[3].

σ = {− (t1 + t2 + 1)x1 − 2t2x2 + (t1 − 2)x3 ≥ −t1 + 2t2 + 1, t ∈ T}.

With random initial guess x0 = (53.610032,−33.575231, 234)′ we have the
following results summarize in Tables 11-15. We mentioned that in all cases
we obtained exact solution in the sense of the previous example.

λ iter x̂

0.1 802 (−76.59096902, 37.29501823, 151.1819372)′

0.5 197 (−76.59094941, 37.29521194, 151.1818986)′

1.0 66 (−76.59092466, 37.29545837, 151.1818493)′

1.5 7 (−92.75218464, 43.40274114, 141.5743986)′

2.0 8 (−154.2997887, 79.41371155, 171.7701319)′

Table 11: Reports for Example 10 where fixed values of λr are considered.
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λ ν iter x̂
0.1 0.476425

1.348034 1.030407
1.293149 0.745037
0.65477 1.908098
0.920137 1.848631
0.129426 0.200086 0.1 20 (−80.4578265, 37.6500462, 149.1597515)′

1.969721 1.50193
0.41762 0.611327
0.301811 0.903388
0.807579 1.140955

Table 12: Reports for Example 10 with initial ν = 0.1.

λ ν iter x̂
0.5

1.086407
1.74707
1.705047 0.5 7 (−78.21645032, 37.45148494, 150.3300799)′

0.590707
1.098887
1.290314

Table 13: Reports for Example 10 with initial ν = 0.5.

λ ν iter x̂
1

1.942737
1.417744 1 4 (−102.8295169, 61.99435816, 131.8878283)′

1.983052
1.301455

Table 14: Reports for Example 10 with initial ν = 1.0.
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λ ν ite x̂
1.5

1.850549
1.833169
1.769563 1.5 6 (−125.456067, 66.38939904, 137.215609)′

1.849053
1.833264
1.589066

Table 15: Reports for Example 10 with initial ν = 1.5.

5 Conclusions

Prior work has documented the effectiveness of the extended relaxation method
for solving LSIS, for example, [9], reports that over projections, for all iter-
ations using a value fixed relaxation with λ ∈ [1, 2], improve outcomes by
decreasing the number of iterations to reach a feasible point. However, these
studies have not considered the overall study where relaxation parameter
variations during the process is considered.

Implemented results were compared with actual examples where were
considered these variations as Tables 8-11 reported.

As tables shown, when a random election of λ is done, the number of
iteration were significantly lower than for fixed values. What illustrating
that in practice is preferable work with a random choice of the parameter λ.
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[8] González-Gutiérrez e., Rebollar L. A. , Todorov m. I., Rate of conver-
gence of a class of numerical methods solving linear inequality systems,
Optimization 60 (7), (2011), pp. 947–957.

[9] Gonzalez-Gutierrez E., Hernandez Rebollar L. A., Todorov M. I., Un-
der and over projection methods for solving linear inequality systems,
Comptes Rendus de la Academie Bulgare des Sciences, 64 (6), (2011),
pp. 785-790

[10] Hu, H., A projection method for solving infinite systems of linear in-
equalities, Ding-Zhu Du and Jie Sun (eds.), Advances in Optimization
and Approximation, Kluwer Academic Publishers (1994), pp. 186–194.

[11] M. K. Richter and K. C. Wong. Infinite inequality systems and cardinal
revelations. Econom. Theory (2005), 26, pp. 947-971.
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