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oX, oẊ, oẌ Cartesian positions, velocities and accelerations of the
traveling plate with respect to the fixed reference frame

XIII



XIV LIST OF VARIABLES

oAi Position of the motor of each rear-arm with respect
to the fixed reference frame

oAi − xi, yi, zi Auxiliary reference frame attached at oAi

oBi Position equivalent to the end of each rear-arm
oCi Position of the ith passive joint connecting each

forearm to the traveling plate or nacelle
oAi-xi, yi, zi Auxiliary frame located at oAi

ixi, iyi Auxiliary positioning vectors measured with respect
to the auxiliary frame

L Rear-arm length

Lc Distance to center of mass of L

l Forearm length

Rb Fixed base radius

Rp Radius of the traveling plate or nacelle

Soffset Distance between ψ and oSS

Aoffset Distance between oNN and ψ
oB′i Virtual spheres center position
NNi Position vector of the passive joints of the nacelle with

respect to the nacelle center
XXi Position vector of the passive joints of the traveling

plate with respect to the traveling plate center
oNaux Total distance between the nacelle center and the

spindle tip

J Jacobian matrix

Jx Cartesian Jacobian matrix

Jq Joint Jacobian matrix

Jm Inverse Jacobian matrix

H Pseudo-inverse Jacobian matrix

Γ Torque vector



XV

Γ∗ Regularized torque vector

Γact Produced torque vector due to actuators, rear-arms
and a half mass of the forearms

Γna Produced torque vector due to the mass of the nacelle
and a half mass of the forearms

ΓGna Produced torque vector due to the gravity acceleration
over the nacelle and a half mass of the forearms

ΓFna Produced torque vector due to the inertial forces over
the nacelle and a half mass of the forearms

ΓGra Produced torque vector due to the gravity acceleration
over the rear-arms and a half mass of the forearms

ΓFra Produced torque vector due to the inertial forces over
the rear-arms and a half mass of the forearms

NWW Kinematic vector of the wrist with respect to the
nacelle center

Kw Kinetic energy of the wrist

Uw Potential energy of the wrist

Γw Torque vector of the wrist actuators

ΓT Torque vector of the whole actuators of SPIDER4

Γra Rear-arms’ torque vector

Γfa Forearms’ torque vector

Γtp Traveling plate torque vector

Mt Total mass matrix of the nacelle

It Total inertia matrix of the SPIDER4 rear-arms

Mfra Matrix of moments produced by gravity on the
rear-arms and a half the mass of the forearms

Iact Inertia matrix of the actuators

Ira Inertia matrix of the rear-arms

Ifa Inertia matrix of the forearms

Mra Mass matrix of the rear-arms



XVI LIST OF VARIABLES

Mfa Mass matrix of the forearms

Mtp Mass matrix of the traveling plate

Mnfa Mass matrix of half the mass of the forearms

g Gravity acceleration

G Gravity acceleration vector

mna Nacelle mass

mtp Traveling plate mass

mnamotors Mass of the three motors located on the Nacelle

mra Rear-arm mass

mfa Forearm mass

Iarm Rear-arm inertia

Iact Motor inertia

ms Mass of the spindle motor

mψ Motor mass that regulates movement in ψ

mφ Motor mass that regulates movement in φ

M(q) Inertia matrix of SPIDER4 delta-like positioning
device and Delta robot

C(q, q̇) Coriolis/Centripetal forces matrix of SPIDER4
delta-like positioning device and Delta robot

G(q) Gravity forces vector of of SPIDER4 delta-like
positioning device and Delta robot

Mw(ξ) Inertia matrix of the wrist mechanism

Cw(ξ, ξ̇) Coriolis/Centripetal forces matrix of the wrist
mechanism

Gw(ξ) Gravity forces vector of the wrist mechanism

M(Q) Inertia matrix of SPIDER4

C(Q, Q̇) Coriolis/Centripetal forces matrix of SPIDER4

G(Q) Gravity forces vector of of SPIDER4



XVII

e1, eq Joint tracking errors

e2, r Combined joint tracking errors

z Vector containing the joint tracking errors and
combined joint tracking errors

X(t) Vector of system states

M(X), F(X) Uncertain nonlinear functions

U(t) Vector of control inputs

ΓRISE RISE control signals

ΓARISE Adaptive RISE control signals

ΓFW Nominal feedforward
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General Introduction

Until before the industrial revolution in the 18th century, certain activities such as manufac-
turing processes, agricultural production, and means of transportation, among others, were
carried out entirely manually with rudimentary tools or with the help of animals. With the
invention of the first machines, these processes became more and more streamlined, which led
to greater productivity and improved product quality, reducing time and costs. An essential
part of the development of all industries has been the automation of their processes. As its
name indicates, automation aims to automatically carry out each process to increase the
production and quality of products. An automatic system makes use of various mechanical,
electrical, electronic, hydraulic, and pneumatic elements to be able to carry out a specific
task. Robots manipulators are devices that integrate several of the elements already men-
tioned in automation systems. A robot manipulator can be defined as an autonomous or
semiautonomous reprogrammable mechatronic device capable of being used in multiple tasks
such as welding, packaging, assembly, and quality control. There are two main types of robot
manipulator architectures: serial robots and parallel robots. Serial robots consist of an open
kinematic chain powered by individual actuators located on the joints. There exist multiple
configurations of this type of manipulator; some of them are inspired by the human arm,
such as the robotic arms with six degrees of freedom. These robots have several advantages,
such as a large volume of work and great dexterity. However, this type of architecture is
not very suitable for moving heavy loads at high speeds due to the high vibrations and
bending produced, which results in a lack of precision. The other type of robot manipulators’
are parallel robots, also known as Parallel Kinematic Machines (PKMs). Unlike the first
type, these manipulators consist of multiple kinematic chains joined together in an element
called the moving base or traveling plate. This kind of kinematic configuration allows the
manipulator’s final element to have more support points, which translates into greater stiffness,
high speed capabilities, and improved precision compared to the serial ones. Thanks to these
advantages, PKMs are gaining more space in applications where precision and high speed are
of vital importance. Nevertheless, the multiple kinematic chains also restrict the manipulator’s
reach, which means that the workspace is considerably less than that of serial robots. Until
now, PKMs have been used in tasks such as Pick and Place (P&P), remote surgery, precise
positioning, and even high-speed machining. However, PKMs are known for their complex
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nonlinear dynamics, the abundance of parametric and nonparametric uncertainties, and in
some cases, the redundant actuation. These are considered as challenges when proposing
control laws that efficiently regulate their positioning. Due to the dynamic complexity of
parallel robots, obtaining a dynamic model using classical methods will result in multiple
equations that require many computational resources for their resolution. Dynamic models
with multiple and complex equations are inadequate to be implemented in advanced control
schemes, so in recent decades methodologies have been proposed to obtain simpler dynamic
models suitable for real-time implementations. Inevitably, by having a simplified dynamic
model, the presence of structured uncertainties will become more noticeable. These kinds of
uncertainties are due to unknown dynamic parameters, disturbances, modeling simplifications,
and parameter variation over time. Considering the problems described above, it is necessary
to design advanced control schemes that guarantee optimal tracking trajectory under the
desired speed requirements, and with the best possible precision even in the presence of
some or all of the issues described before. This research’s goals can be summarized in the
development of the kinematic and dynamic models of a new PKM prototype designed to
perform machining operations and the proposal of multiple control schemes that improve
the performance of parallel robots under various operating conditions. The mathematical
models of the prototype, as well as the proposed controllers, have been validated through
real-time experiments and numerical simulations. The results obtained support the validity
of the proposals made in this thesis.
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Organization of the thesis
The contents of this thesis are organized into three parts in the following form:

Part 1 is formed by two chapters dedicated to introducing the reader to the context and
state of the art on dynamics and control of PKMs.

• Chapter 1 presents a general context of robotics emphasizing parallel robots, starting
from their historical development to their potential applications. Finally, this chapter ex-
poses in detail the main objectives of the thesis, together with the research contributions
to the subject of PKMs.

• Chapter 2 describes the methodologies reported in the literature to compute the
dynamic model of PKMs. The chapter also provides a survey and classification of
existing control strategies implemented to regulate the motion of parallel robots.

Part 2 integrates the thesis contributions as the modeling of a new PKM prototype and the
proposed control solutions. The contributions are organized in the following two chapters.

• Chapter 3 is dedicated to describing and developing kinematic and dynamic models for
two experimental platforms. Such experimental platforms are classified as non-redundant
and redundant PKMs.

• Chapter 4 establishes the control solutions designed to deal with specific tasks developed
by parallel robots. The design procedure for these control solutions is described in
detail. Moreover, the chapter includes a method to solve the problem of internal forces
generation of redundantly actuated PKM.

Part 3 addresses the validation of the proposed dynamic models and control schemes.

• Chapter 5 presents the obtained experimental results of the redundant parallel robot
applying the proposed models and control solutions. The results are summarized in
tables and graphs.

• Chapter 6 details the acquired results of one of the proposed control solutions for the
non-redundant PKMs validated via numerical simulations.

Lastly, all the achievements made during this research are summarized in the general conclusion,
where some perspectives on future work are also presented.
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Context, Problem Formulation and
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C h a p t e r

Context and Problem Formulation

The use of Parallel Kinematic Machines in different kinds of industries has been increased
considerably in the last decades due to the advantages obtained by their closed-loop
construction in terms of higher stiffness, lower inertia, and structural stability. This chapter
introduces the fundamental aspects related to them, as well as their control problem. The
objectives of this thesis, together with the main contributions of this research, are also are
addressed in this chapter.

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Classification of Robotic Manipulators . . . . . . . . . . . . . . . . 4
1.3 Overview of Parallel Kinematic Machines . . . . . . . . . . . . . . 8
1.4 Control Problem Formulation . . . . . . . . . . . . . . . . . . . . . 20
1.5 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Main Contributions of the Thesis . . . . . . . . . . . . . . . . . . . 23
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.1 Introduction
Robotics are mechatronic systems formed by mechanical, electrical, and electronic elements
controlled by commands from a computer. Nowadays, they are presented in seas, the sky,
schools, factories, hospitals, and homes doing productive or leisure activities. According to
The Robotics Institute of America A robot is a re-programmable multi-functional manipulator
designed to move materials, parts tools, or specialized devices through variable programmed
motions for the performance of a variety of tasks [Tsai, 1999]. Robotic Manipulators are a
branch of robotics that carry out tasks developed by human arms to handle and position objects.
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4 CHAPTER 1. CONTEXT AND PROBLEM FORMULATION

Currently, robotic manipulators play a decisive role in industrial automation, preserving
quantity and quality in production lines. They can be reconfigured to perform different
automated tasks, such as spray painting, welding, material handling, or component assembling.

1.2 Classification of Robotic Manipulators

In several works reported in the literature, robotics manipulators are classified according
to their kinematic configuration. There are three kinematic configurations for robotic ma-
nipulators, which are serial, parallel, and hybrid. Each kinematic architecture has certain
advantages over the others in their mechanical construction that makes them attractive for
carrying out specific tasks; let us expound each one of them.

1.2.1 Serial Manipulators

Serial robots are the most extended manipulators in industrial applications. They have an
open-loop kinematic chain formed by several links connected to each other by prismatic or
rotational joints. Usually, serial manipulators have actuators in all joints. The end-effector
in a Serial Manipulator is located at the end of the kinematic chain. One example of a
serial manipulator is the robotic arm imitating the human arm parts (shoulder, elbow, and
wrist). Figure 1.1a shows a six Degrees of Freedom (DOF) serial robotic arm; its kinematic
configuration is illustrated in Figure 1.1b, where the gray boxes with a letter R denote the
active rotational joints.

1.2.2 Parallel Kinematic Manipulators

Parallel Kinematic Manipulators (PKM), also known as Parallel Robots or Parallel Kinematic
Machines, are robotic devices conceived as a solution for the limitations presented in Serial
Manipulators in terms of stiffness and precision at high accelerations. According to [Merlet,
2006], a generalized Parallel Manipulator is a closed kinematic loop mechanism, whose
end-effector is connected to the base through at least two independent kinematic chains. Figure
1.2a shows a 6-DOF Hexapod being a typical example of a PKM. The manipulator’s kinematic
configuration is appreciated in Figure 1.2b, where the gray boxes with a letter P represent
active prismatic joints, whereas the withe boxes with a letter U symbolize passive universal
joints.

1.2.3 Serial versus Parallel Manipulators

Serial manipulators and PKM have advantages and disadvantages due to their kinematic
construction. These dates are detailed in this subsection [Krut, 2003].
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(a) Robotic arm MH225 From Yaskawa corpo-
ration

R R R R R RBase End 
Effector

(b) Robotic arm kinematic chain diagram

Figure 1.1: Exemplification of a Serial manipulator with its kinematic configuration.

(a) Hexapod H-850 From PI Motion
USA

U

Base
Travelling
Plate

P U
U P U
U P U
U P U
U P U
U P U

(b) Hexapod chain diagram

Figure 1.2: Exemplification of a PKM with its kinematic configuration.
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Advantages of Serial Manipulators

The main desired features of serial robots are:

• Large workspace volume

• Good Dexterity proprieties

Drawbacks of Serial Manipulators

In contrast to the above, the main inconveniences of Serial manipulators are listed below [Krut,
2003], [Germain, 2013].

• Low stiffness caused by their open-loop kinematic structure

• High inertia production due to the masses distributed over the entire kinematic chain
(actuators, components transmission)

• Cumulative positioning errors due to the layout of the series segments.

• Fatigue and wear of the links ensuring the circulation of information between the sensors
and the control. In terms of safety, this is essential since a transmission error can have
disastrous consequences on the robot’s movements.

Advantages of Parallel Kinematic Manipulators

The closed-loop construction in PKMs entails the following advantages with respect to their
serial counterparts [Germain, 2013], [Krut, 2003], [Merlet, 2006].

• High mechanical stiffness since the payload is taken up by all the kinematic chains

• High load capacity

• Low moving mass

• Possibility to perform high dynamic movements (high accelerations)

• They have the possibility of positioning the actuators directly on the fixed base or very
close to it; this feature has the following positive consequences:

– Wide choice of motors and gear-heads since their mass has no influence on the
inertia of the moving robot.

– Significant simplification of connection problems between motors, sensors and
controller (simpler and more reliable wiring).

– Easy cooling of the actuators, and therefore reduction of precision problems due to
expansion and high potential power.
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Table 1.1: Comparison Proprieties Between Serial and Parallel Manipulators
Proprieties Serial Manipulator Parallel Manipulator

Stiffens Low High
Workspace Large Small
Actuator’s Location In the Joints In the base
Inertia forces and stiffness High and less respectively Less and high respectively
Payload/weight ratio Low High
Inverse kinematics Difficult and complex Straightforward and unique
Forward Kinematics Straightforward and unique Difficult and complex
Singularities Inverse kinematic Inverse, forward and combined

Drawbacks of Parallel Kinematic Manipulators

Compared to serial robots, the disadvantages of parallel robots can be summarized as follows:

• Limited working volume compared to the total volume of the mechanism

• Forward Kinematic Models (FKM) sometimes are difficult to determine.

• Presence of singularities which lead to a loss of control of the mobile structure, or even
to a deterioration of the mechanics. This is the most critical point when designing a
machine with parallel architecture.

• The use of a large number of passive links induces wobbles, making the behavior of the
robot difficult to model. However, they must be mastered to define dangerous zones
near the singularities and to improve the precision of the robot.

In accordance with [Bennehar, 2015], [Saied, 2019], and the points mentioned above, one can
summarize the following proprieties of Serial and Parallel Manipulators in Table 1.1.

1.2.4 Hybrid Manipulators

A Hybrid Manipulator can be defined as a juxtaposition of two mechanisms where one of
them is formed a Serial structure, and the other one is Parallel. This kind of architecture can
be divided into two branches:

• Serial positioning device with parallel wrist: This configuration associates a serial
structure with a parallel structure in the following form. The serial mechanism is
responsible for positioning, while the parallel mechanism is used for the end-element
orientation. In this category of hybrid manipulators, we can mention the Sprint Z3 of
DS Technology developed for aerospace applications [Chen et al., 2014]. The carrier
mechanism uses two prismatic actuators to move the wrist on the plane x,y. The last
one provides two rotational motions and one translational along z ; the manipulator is
shown in Figure 1.3.
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(a) Sprint Z3 CAD view
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(b) Sprint Z3 chain diagram

Figure 1.3: Hybrid manipulator with serial carrier and parallel wrist

• Parallel positioning device with serial wrist: In this case, the carrier mechanism is the
Parallel Manipulator structure coupled with a Serial wrist responsible to orient the
end-element. An example of this configuration is the Tricept 845 having 3T-2R DOF
(see Figure 1.4) ; where three Universal-Prismatic-Spherical kinematic chains perform
the three translational movements as long as a serial wrist mechanism performs the
two rotational movements; the manipulator utilizes a passive kinematic chain (the U-P
chain) to constrain the platform of the parallel structure [Neumann, 2006].

1.3 Overview of Parallel Kinematic Machines
Having explained the concepts related to robotic manipulators in a general form. Let us now
focus on the subject of PKMs, starting with their historical development and continuing with
their potential applications.

1.3.1 Historical review of PKMs

According to [Bonev, 2003], in the twentieth century, James E. Gwinnett designed a moving
platform for the entertainment industry. The patent for this system was requested in 1928.
Unfortunately, the designed mechanism was never built [Gwinnett, 1931] (see Figure 1.5).
After in 1938, Willard LV Pollard designed the first industrial parallel robot, intended for spray
painting operations. The design consists of a system of five degrees of freedom, composed of
three link sets. Each set is formed by a proximal and a distal arm joined together through
universal joints. Three actuators mounted on the base commanded the tool’s position, while
its orientation is provided by the other two actuators located on the base transmitting the
movement to the tool using flexible cables, the parallel robot of Willard LV Pollard is shown
on Figure 1.6 [Pollard, 1940]. In the year of 1947, Dr. Eric Gough designed the first octahedral
hexapod type platform with variable length sides. Dr. Gough called it the universal testing
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(a) Tricept general view
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(b) Tricept chain diagram

Figure 1.4: Hybrid manipulator with parallel carrier and serial wrist

Figure 1.5: Spatial Platform Patented by James E. Gwinnett [Gwinnett, 1931]
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Figure 1.6: Willard LV Pollard Parallel mechanism [Pollard, 1940]
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Figure 1.7: Gough Platform [Gough and Whitehall, 1962]

Figure 1.8: Stewart Platform

machine or universal platform. This system was invented to respond to the problems of
air-landing loads; that is, the Gough platform tried to simulate an airplane’s landing process.
This machine was used to check the tires of the Dunlop house under loads applied on different
axes. The Gough platform has been one of the mechanisms that have achieved greater
recognition in parallel robotics. Figure presents 1.7 an example of the Gough platform [Gough
and Whitehall, 1962]. In 1965 Stewart published an article in which he designs a 6-DOF
platform intended to be used as a flight simulator. His design was different for the proposed
octahedral hexapod by Gough. Ironically, the Gough platform is often referred to as the
Stewart platform. Figure 1.8 depicts a sketch of the Steward platform. [Stewart, 1965].
Nevertheless, Stewart is not considered the creator of the first flight simulators based-on PKM.
Indeed, in the ’60s, the US engineer Klaus Cappel designed and built the first functional
flight simulator. His design was based on an octahedral hexapod that reached the same
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Figure 1.9: Flight simulator of Klaus Cappel [Cappel, 1971]

kinematic arrangement as the one proposed years ago by Dr. Gough. The Cappel patent was
filed in 1964; however, he was unaware of the invention of Dr. Gough and Stewart’s paper,
which was not yet published. Figure 1.9 shows the first flight simulator built by Ing. Klaus
Cappel [Cappel, 1971]. About twenty years passed without any significant progress in the
subject of PKMs until, in the ’80s, when Reymond Clavel, professor of the École Polytechnique
Fédélale de Lausanne (EPFL), introduces the 3T-1R-DOF Delta PKM designed for P&P
tasks [Clavel, 1990]. The Delta robot is mainly composed of three Revolute-Spherical-Spherical
(RSS) kinematic chains making use of mechanisms based on parallelograms restraining the
orientation of the traveling plate entirely, resulting in only translational movements, and
an interdependent Rotational-Universal-Prismatic-Universal (RUPU) chain performs the
rotational movement of the Delta robot. This PKM can reach high accelerations (Up to 50
G) thanks to its lightweight mechanism. The Delta is one of the most successful PKMs in
history ever with many modifications around the word. In 1999 Dr. Clavel was awarded the
"Gloden Robot Award" (sponsored by ABB) for his innovative creation. Figure 1.10 shows
the original design of the Delta PKM [Taghirad, 2013].

Variations of the Delta PKM along the time

Several modifications have been made to the original prototype of R. Clavel. In [Pierrot
et al., 1991], F. Pierrot extend the concept of the Delta PKM form 3-DOF to 6-DOF, leading
to the creation of the "Hexa" PKM. Six rotational actuators located on the fixed perform
the robot’s movements, and unlike the Delta, the Hexa PKM can regulate the orientation
of its traveling plate. In order to eliminate the RUPU chain presented on the Delta robot,
some mechanic solutions based on articulated traveling plates have been proposed. The first
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Figure 1.10: Delta PKM of R. Clavel. Patent No. 4,976,582 [Clavel, 1990]

prototype was called "H4," consisting of four kinematic chains connected to an articulate
traveling plate composed of three pieces [Company and Pierrot, 1999]. After in [Krut, 2003],
the traveling of H4 was customized, adding a gear mechanism to improve its performance.
Notwithstanding, this PKM had some drawbacks such as the abundance of singularities and
possible internal collisions, so a careful selection of the positions had to be necessary to avoid
them. To overcome the issues presented on H4, a new family of PKMs called I4 was proposed
in [Krut et al., 2003]. The main difference between I4 PKMs and H4 is the replacement of
pivot joints by prismatic ones and gears by rack-and-pinion mechanisms. This family of PKMs
had two variants I4L and I4R, being actuated by linear and rotational actuators, respectively.
However, the drawback of an articulate traveling plate using prismatic joints is its short life if
the PKM is frequently operated at High-speed. To outcome this limiting, in [Nabat et al.,
2005], a new PKM called Par4 was developed with a new concept of articulated traveling plate
consisting of four main parts linked by two rotational joints. Two mechanisms, one using a gear
assembly and other with pulleys and belts, were proposed to amplified the produced rotational
movement. Nowadays, Par4 is commercialized by Adept Technologies under Quattro’s name,
considered unlit now the fastest industrial PKM in the world [Bennehar, 2015]. A modified
version of Par4 called Heli4 was presented in [Nabat, 2007]. The difference between this PKM
and Par4 is the traveling plate composed of two platforms connected through a helical screw
that produces the rotation around the vertical axis. Penta Robotics commercializes Heli4
under the name of Veloce [Shayya, 2015]. It has been proposed solutions to produce motions
in a vertical plane with very high-speed for instance, in [Baradat et al., 2009], a 2-DOF PKMs
named Par2 was proposed for very high-speed motion on the x, z plane. This PKM if formed
by two sets of active and passive kinematic chains; these last ones have the function to restrict
the movement in only one plane. It has been reported that this PKM is able to reach high
accelerations up to 40G [Pierrot et al., 2009]. In [Germain et al., 2011], a novel 2-DOF PKM
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concept called IRSBOT-2 was presented, constructing by only two active kinematic chains.
Therefore, it is less subject to uncontrolled parasitic effects that may produce the passive
kinematic chains of Par2. There have been reported in the literature other prominent PKMs
which make use of a Redundantly Actuated (RA) configuration. They are R4 with 3-DOF
and four actuators, destined for applications that requiring extreme accelerations [Corbel
et al., 2010], SPIDER4, being the first delta-like PKM destined for machining operations,
and T3KR. This last one PKM shares several similarities with Par4; however, the rotational
movement is performed by an independent actuator located on the traveling plate. Figure
1.11 presents a timeline with all the examples presented in this part.

1.3.2 Applications Developed by Parallel Kinematic Machines

Thanks to their main features as improved stiffness, high dynamics, and potentially improved
accuracy, PKMs have gained several places in industries where such features play a crucial
role. Therefore, let us explain some potential applications developed by them.

P&P Tasks

The concept of P&P Place Tasks is basically to pick an object from an initial position and
place it to another position. This action is essential in assembly lines or packaging production
lines. Lightweight PKMs as the delta-like manipulators are the best candidates to develop
high-speed P&P operations thanks to their improved stiffness and high dynamic response.
The original Delta PKM developed by R. Clavel was conceived for this purpose used in
a chocolate packaging line in a first instance and for manipulating very light objects. As
was showed before, the original Delta robot has been modified to satisfy the greatest P&P
exigences, such as high positioning precision under extreme high-speed demand, improved
orientation capabilities, higher payload capacity, and an extended operational workspace.
Figure 1.12 shows a food line assembly with Delta PKMs of the Swiss company Demaurex,
and Adept Quattro being the fastest commercialized PKM.

Machining Operations

Machining is the broad term used to describe the removal of material from a workpiece and
is one of the most critical manufacturing processes. Machining operations can be applied
to metallic and non-metallic materials such as polymers, wood, ceramics, composites, and
other materials. The most common machining operations are milling, turning, and drilling.
These operations require high precision in positioning the cutting tool and the desired
cutting path. Hence the machine tools should satisfy these requirements. PKMs, due to
their structure conformed by the closed-loop kinematic chain mechanism, have some key
advantages over their serial counterparts in terms of accuracy, stiffness, and moving masses
and inertias. They are relatively more unaffected in mechanical construction than the existing
conventional machining tools [Zhang, 2009] being thus more suitable for machining operations.
However, the main drawbacks of PKMs lie in their small workspace and extensive singular
configurations [Merlet, 2006] [Park and Kim, 1999]. Some notable examples of PKMs for
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Delta Parallel Robot 
[Clavel 1988]

Hexa Robot
[Pierrot 1991]

H4 Robot
[Company 1999]

I4 Family
[Kurt 2003]

Par4 and Heli4
[Nabat 2007]

Par2 Robot
[Cedric 2009]

R4 Robot
[Corbel 2010]

IRSBOT-2 
[Germain 2011]

T3KR
[2014]

SPIDER4
[2014]

Figure 1.11: Timeline of PKM based on the Delta Robot
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(a) Demaurex Delta PKM in the food in-
dustry

(b) Adept Quattro

Figure 1.12: Examples of PKMs for P&P Tasks

(a) Orthoglide PKM (b) Arrow PKM

Figure 1.13: Examples of PKMs for Machining Operations

machining are: the Variax Hexacenter developed by Giddings & Levis company with 6-DOFs
based on the Gough platform [Merlet, 2006], Orthoglide PKM, having 3 translational DOFs
with a fixed orientation [Chablat and Wenger, 2007], ARROW PKM which has 5-DOFs
(3T-2R) [Shayya, 2015], HexaM of Toyoda with 6-DOFs (3T-3R) [Pierrot and Shibukawa,
1999], P800/P200 from Metrom, Okuma Cosmo Center and The Octahedral Hexapod from
Ingersoll with 5-DOFs [Merlet, 2006]. Figure 1.13 illustrates two of these examples.

Coordinate Measuring Machines

Measuring is another potential application that PKMs can execute successfully due to the
accuracy provide of their closed-loop kinematic construction, also increasing the structural
stability of the machine. Traditionally, serial devices have performed this operation. However,
errors caused by geometric offsets and deformations by load effects, and a serial structure’s
low stiffness may affect the precision of the measurements [Zhuang and Wang, 1997]. Some
examples of Coordinate measuring machines are the KIM-75 form the Russian company Lapic
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(a) KIM-750 Machine (b) TM-1000 Machine

Figure 1.14: Examples of PKMs for coordinate measuring

(Figure 1.14a), or the TM 1000 machine (Figure 1.14b) [Angeles et al., 2005], [Merlet, 2006].

Medical Applications

Thanks to the closed-loop architecture, some PKMs as Gough/Stewart platforms or delta-like
manipulators have been integrated successfully in this area. PKMs present desired features
that make them attractive solutions in the field of medicine. For instance, robotic-assisted
surgery requires a device that takes up as little space as possible, guaranteeing precise
positioning of the surgical instruments [Simaan, 1999]. In [Wapler et al., 2003], a 6-DOF
hexapod was proposed as a universal platform for different types of surgical instruments,
making emphasis on neuro endoscopy ensuring accuracy over 20µm. The surgiscope is a
tool-holder device developed by the Intelligent Surgical Instruments & Systems company
(ISIS). This is a delta-like manipulator dedicated to microscope applications in neurosurgery
and contains a microscope on the traveling plate whose mass is approximately 70 kg [Briot
et al., 2007]. Moreover, the applications of the Delta PKM in the area of medicine are not
only limited to the positioning of objects. In [Li and Xu, 2007], a delta-like manipulator was
proposed for cardiopulmonary resuscitation (CPR), making chest compression in the patient.
The mentioned examples for medical applications are shown in Figure 1.15.

Agriculture Applications

The agriculture industry is an important area where robotics are making headway due to
the hard work that cultivating and preserving crops represents. Such operations make use of
chemical or mechanical processes to destruct the weeds [Ovchinnikov et al., 2020]. EcoRobotix
is an autonomous robotic system designing for weeding. It consists of a mobile vehicle with
two Delta robots integrating a vision system (see Figure 1.16). The cameras identify weeds,
and the Delta PKMs applied a microdose of herbicide to kill them without hurting any of the
crops. The system is powered with solar energy, and the machine status can be consulted
through an application for smartphones [EcoRobotix, 2011]. This invention helps considerably
to reduce the use of herbicides and fertilizers, which can harm when used in excess.
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(a) SugiScope PKM from ISIS (b) Surgical PKM from Physics Instru-
ments

(c) Delta PKM applied for CPR

Figure 1.15: Examples of PKMs for Medical Applications

Figure 1.16: EcoRobotics system developed for agriculture applications
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(a) A flight simulator of Lufthansa (b) Volvo driving simulator

Figure 1.17: Examples of Motion Simulators

Motion Simulators

Motion simulators are some of the most relevant applications developed by PKMs. Devices
used for this purpose must require 6-DOF motions, enough capacity to support heavy loads,
fast and accurate movements, and high stiffness. For these mentioned reasons, the majority of
them are based on the Gough/Stewart’s and Cappel’s platform architecture. In the aerospace
industry, they play an essential role in aircrafts’ design to prevent fatal accidents [Asif, 2012].
In addition to being used as flight simulators, motion simulators have been used as car, ship,
and space simulators [Merlet, 2006]. Figure 1.17 presents some examples of motion simulators.

3D Printers

Three-dimensional (3D) printing, also known as Additive Manufacturing (AM), is the con-
struction of a three-dimensional object from a Computer-Aided Design (CAD) model. These
devices build products adding the material layer by layer rather than by subtracting material
from a piece of material as machining tools. In recent years, 3D printers have gained popularity
since they facilities the manufacturing of low-cost pieces reducing wasted material. Nowadays,
this technology is used to manufactured automobile components, aircraft components, Custom
hearing aids, Custom orthodontics, among others [Campbell et al., 2011]. The Delta robot
with linear actuators is widely used for 3D printing due to the parallelograms bars keeping the
traveling plate perfectly horizontally, and the linear actuators provide more rigidity resulting
in useful quality end-products [Campbell et al., 2011]. Figure 1.18 presents some commercial
3D printers based on the linear Delta PKM.

Haptic Devices

Haptic is the science that deals with the study of the sense of touch. Haptic devices intended
that the user can feel and interact indirectly with an external environment through physical
manipulation of the device. These kinds of instruments are mainly present in virtual and
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(a) Alfawise 3D Printer (b) Monoprice 3D Printer

Figure 1.18: Examples of 3D printers based on PKMs

augmented reality, gaming controllers, and remotely operated surgery. According to [Birglen,
2003], some mechanical features such as low friction, low inertia, high dynamic range, and high
stiffness are essential for high performance in haptic devices. PKMs are well-known for having
those mentioned proprieties, so they are appropriate candidates to be used as sophisticated
haptic interfaces. There have been proposed haptic devices based on the Gough/Stewart
platform and the Delta robot. For instance, the sigma.7 model of the Swiss company Force
dimension, which is a 7DOF haptic interface based on a 3-DOF Delta PKM [ForceDimesion,
2010], or the prototype proposed in [Sabater et al., 2007], being a kind of 6DOF Gough/Stewart
actuated trough cable-driven pantographs instead of linear actuators. Figure 1.20 shows the
mentioned examples.

1.4 Control Problem Formulation

Many factors converge in order to PKMs successfully develop the previously mentioned
applications. These factors range from mechanical design, modeling to trajectory planning
and control design. In the literature, it has been reported works relating to the enhancement
of such aspects in order to increase the capabilities of Parallel robots. Control is a vital
research topic in PKMs since control laws determine the generalized forces/torques that the
actuators must develop in order to guarantee the execution of the commanded task while
satisfying given transient and steady-state requirements [Siciliano et al., 2010]. Following this
research line, the general purpose of this thesis is to propose and validate advanced control
solutions to improve the overall performance of PKMs under different operating conditions.
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(a) Sigma.7 from Force Dimension (b) Prototype based on the
Gough/Stewart platform

Figure 1.19: Examples of haptic devices based on PKMs

1.4.1 Challenges in Control for PKMs

Parallel robots are complex nonlinear systems, so controlling these kinds of systems results in
a significantly challenging task. From the control point of view, the following considerations
must be taken into account to design control schemes for PKMs. [Chemori, 2017].

Highly Nonlinear dynamics

The closed-kinematic-structure, together with the presence of several passive joints, make
PKMs complex nonlinear systems. Their kinematic configuration leads to coupling dynamics,
so the actuators’ movements must be synchronized to each order not to harm the whole
performance of the PKM. According to [Natal et al., 2015], the effect of nonlinearities in PKMs
increases considerably at high speeds/accelerations operative conditions. In this context,
high-accelerations yield to mechanical vibrations that may produce mechanical damages and
decreasing the precision. Thus, the use of decentralized linear controllers does not guarantee
the safety and stability of PKMs in such operative conditions. For these reasons, advanced
nonlinear control techniques should be developed in order to minimize the nonlinearities’
effects while keeping the demands of high precision under high-acceleration requirements.
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Uncertainties unstructured and structured

Uncertainties are some of the reasons why robots behave unexpectedly in the real environment
concerning the expected behavior obtained through numerical simulations. As is explained
in [Saied, 2019], and [Bennehar, 2015]. Uncertainties are the differences between a calculated
dynamic model and the real system. They are classified as unstructured and structured. The
first type includes geometric manufacturing errors, non-modeled phenomena, dynamic model
simplifications (i.e., neglect the actuators’ dynamics or friction), sensors’ noise, and wear of
mechanical elements. Whereas, the second type comprises inaccurate knowledge of dynamic
parameters (e.g., masses and inertia), and dynamic parameters variations as the payload in
a P&P application, or contact forces in machining operations. Advanced control strategies
should be considered to deal with any uncertainty ensuring good dynamic performance and
high precision in the developed task.

Actuation Redundancy

In robotics, actuation redundancy means that the system has more actuators than DOF
[Mueller, 2011]. Actuation redundancy has been used to improve kinematic capabilities in
PKMs, adding one more kinematic chain with its respective actuator. This configuration
presents the following advantages:

• Enhanced dexterity

• Singularity avoidance in the operational workspace

• Collision avoidance

• Backlash avoidance

• It improves the load distributions as log as reduces the actuators’ power consumption

• Improved stiffness and therefore higher accuracy

However, actuation redundancy represents a significant challenge in the control of PKM,
since it leads to the generation of internal forces that may create pre-stress in the mechanism
without operational motions and can damage the robot’s mechanical structure. According
to [Hufnagel and Muller, 2012], the internal forces can be produced by non-synchronized
independent control of the actuators, geometric imperfections, and measurement errors. In the
literature, actuation redundancy solutions based on the pseudo-inverse Jacobian matrix have
been proposed to eliminate those antagonistic forces. The concept of actuation redundancy is
illustrated in Figure 1.2 through two 3-DOF PKMs.

1.5 Objectives of the Thesis

The main objective of the present research consists of proposing and validating through
numerical simulations and real-time experimentation, advanced control schemes to enhance
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(a) Non-redundantly actuated 3-DOF PKM (b) Redundantly actuated 3-DOF PKM

Figure 1.20: Illustration of the concept of actuation redundancy in PKMs

the tracking performance of parallel robots operating in a wide of work environments. Such
control solutions are validated in two PKMs prototypes with different application purposes.
The first one corresponds to a redundantly actuated PKM designed for machining operations
called SPIDER4. The last one is a non-redundantly actuated 3-DOF Delta PKM designed for
P&P applications. For the Delta robot, many modeling approaches have been reported in
the literature. However, until this investigation, no information related to the modeling of
SPIDER4 had been previously reported. Therefore, the kinematic and models corresponding
to SPIDER4 must be developed before to validate such control schemes on this platform.

1.6 Main Contributions of the Thesis
In order to fulfill the objectives set forth above, the following contributions were developed in
this thesis research.

1.6.1 Kinematic and Dynamic models for a New RA-PKM called
SPIDER4

With the purpose of testing advanced control schemes on SPIDER4, it was primordially
necessary to develop its kinematics and dynamics models. Mechanically, SPIDER4 is formed by
a redundant actuated parallel device responsible for the positioning and serial wrist mechanism
that performs the machining tool orientation. The Inverse Kinematic Model (IKM) of the
SPIDER4 was formulated through the loop closure method commonly used in PKM, and a
geometrical analysis for the serial wrist. In contrast, the Forward Kinematic Model (FKM)
was obtained through a virtual spheres algorithm in virtue that the traveling plate of SPIDER4
always remains in the same orientation. The Inverse Dynamic Model (IDM) of SPIDER4
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proposed in this work was formulated considering some modeling simplifications with the
purpose of integrating it as a part of the proposed control solutions. Such simplifications aim
to reduce the computation time in real-time implementations.

1.6.2 Control solutions for PKMs Based-on RISE Control

Robust Integral of the Sign Error (RISE) is a robust control technique that is becoming popular
in robotics control since it can compensate additive system disturbances and parametric
uncertainties guaranteeing asymptotic stability. Considering these features presented by the
RISE control. This controller is selected as the feedback controller base for the following
control solutions.

Control Solution 1: A RISE Controller with Nominal Feedforward

This control solution has the objective to validate the effectiveness of the proposed inverse
dynamic model of SPIDER4. To this end, the obtained dynamic equations were integrated
as the feedforward term together with RISE control. This control solution was validated
by real-time experimentation in a nominal scenario with respect to standard RISE control.
Performance indexes were used to determine the enhancement produced by the addition of
the obtained inverse dynamic model.

Control Solution 2: A RISE Feedforward Controller with Adaptive Feedback
Gains

Since SPIDER4 is conceived to perform machining operations, contact forces will inevitably
affect the robot’s performance in a milling or drilling operation. In order to hold as small
as possible the tracking errors under this operative condition, adaptive feedback gains for
RISE feedforward are proposed. If the values of the tracking errors in joint space increase,
adaptation laws will make the values of certain gains of the RISE controller increase to keep
the values of the tracking errors as small as possible without overestimating the controller
gains that may lead to producing undesirable noise. This control solution was validated
through a real-time machining task. Its performance was compared with respect to Standard
RISE and the previously mentioned RISE feedforward controller.

Control Solution 3: A RISE Controller with Adaptive Feedforward Compensation
Based-on B-Spline Neural Networks

Because of the presence of structured uncertainties in the majority of work environments, the
fusion of RISE control with Associative Memory Neural Networks (ANN) is proposed to keep
tracking errors as small as possible despite the presence of such issues. The proposed control
solution makes use of a kind of AMNN called B-spline Neural Network (BSNN). The BSNN
aims to online estimate the dynamics of the Delta PKM to integrated it into the control loop
in order to cancel inherent nonlinearities and compensate for uncertainties. Artificial Neural
Networks (ANN) are well known to be universal approximators, being employed widely in



1.7. CONCLUSION 25

nonlinear model identification. The reasons behind the selection of the BSNN for online
estimation are explained in Chapter 4. This control contribution was validated by the Delta
robot under different scenarios through numerical simulations in Chapter 5.

1.7 Conclusion
In this chapter, an overall framework of PKMs has been presented. The chapter introduces
robotics concepts as fundamental definitions, the classification of the different kinematic
structures of robotics manipulators (serial, parallel, and hybrid), making a comparison of the
advantages and drawbacks between serial and parallel manipulators. The first investigations
and prototypes of parallel robots began in the 20th century, standing out mainly the PKMs
with Gough/Stewart architecture and those based on the Delta PKM. Empathizing on the
Delta robot, many modifications have been carried out to the original prototype in order
to enhance its capabilities in terms of improved stiffens, larger workspace, and the ability
to reach higher accelerations. For their desirable features compared to serial manipulators,
PKMs have dabbled in different industries developing multiple applications where precision
is essential. However, PKMs are known to be highly nonlinear systems integrating the
presence of uncertainties and, in some cases, the redundant actuation; therefore, advanced
control strategies must be provided to deal with the mentioned challenges guaranteeing good
dynamic and tracking performance of PKMs in tasks executions. This thesis aims to develop
model-based control strategies to improve the tracking performance of PKMs in the presence
of such issues. In the next chapter, the state of the art of proposed control solutions for PKMs
in the literature will be presented.
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2
C h a p t e r

State of the Art

Since this thesis’s aim relies on the modeling and control of PKM, this chapter introduces a
brief description of the main formulations to compute the dynamic model of PKMs. These
formulations are Newton-Euler, the principle of virtual works, and Euler-Lagrange. Moreover,
it is explained a methodology simplification for PKMs with delta-like architecture. Regarding
the control topic, a survey of some existing control techniques implemented on PKMs is
presented. These control schemes are classified into main categories: non-model-based
controllers and model-based controllers.

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Dynamic Modeling of Parallel Kinematic Machines . . . . . . . . 28
2.3 Overview of Motion Controllers for PKMs . . . . . . . . . . . . . 35
2.4 Non-model-based controllers . . . . . . . . . . . . . . . . . . . . . . 35
2.5 Model-Based-Controllers . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.1 Introduction

As stated in Chapter 1, this investigation aims to propose new advanced control solutions of
PKMs to fulfill the requirements needed to execute a tracking trajectory task satisfactorily.
That is, the proposed controller must guaranteeing high precision under different operative
conditions even in the presence of any uncertainty or perturbation that may affect the
system performance. In order to test the proposed control techniques, it is necessary to have
knowledge of the kinematic and dynamic models of the experimental platforms that will be
used. For the case of the Delta PKM, both its kinematic and dynamic models have been

27
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well reported in the literature. However, SPIDER4 is a new prototype, and therefore it is
necessary to calculate both its kinematic and dynamic models before proceeding with the
implementation of controllers in it. In this way, we establish the other main objective of this
thesis, computing the kinematic and dynamic models for SPIDER4. Therefore, let us present
an overview of the dynamic formulations for PKMs before describing some implemented
control strategies on them.

2.2 Dynamic Modeling of Parallel Kinematic Machines

Dynamic modeling formulation is a crucial part of the study of parallel robots since it allows
us to analyze the behavior of them under different operative conditions through numerical
simulations. The results obtained from the simulations help researchers propose improvements
to any PKM in terms of mechanical or control design to obtain a proper performance under
specific operating requirements. Moreover, some advanced controller techniques require full or
partial information about the dynamic equations of the PKM to be controlled to improve the
tracking performance. Dynamic analysis of PKM is complex due to the closed-loop structure
involving several kinematic constrains. In the literature, the most common ways to develop
the dynamic motion equations for a PKM are based on the Newton-Euler, principle of virtual
works and Lagrangian formulations.

2.2.1 Dynamic modeling approaches for PKM

Before proceeding with the explanation of the different formulations to obtain the equations
of motion of a parallel robot, let us define the following nomenclatures for the analysis taking
into consideration Figure 2.1.

• The fixed base of the PKM is attached to the fixed reference frame O − xo, yo, zo

• A reference frame is located on the moving platform denoted by p − xp, yp, zp whose
coordinates are in function of O − xo, yo, zo

• For any parallel robot the number of DOF will be represented by m

• The joints (prismatic, revolute, universal, etc.) are located at the points Aij, where the
kinematic chain number is denoted by i = 1, ...n, and the joint number by j = 1, ...l

Newton-Euler formulation

Newton-Euler (NE) is one of the most common formulations used to compute the dynamic
model in PKMs. The methodology is based on the computation of the motion equations for
each body element of the robot. Applying this formulation is necessary to derive linear and
angular accelerations of links as well as the moving platform. However, it leads to a large
number of equations resulting in poor computation efficiency [Tsai, 1999]. Considering the
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Figure 2.1: General kinematic representation of a PKM

diagram presented in Figure 2.1, we defined the NE equations for the link set of a PKM that
may be expressed in the following form [Briot and Khalil, 2015]:∑

fij = mc
ijẍij∑

cnij = cIijω̇ij + ωij × (cIijωij)
(2.1)

where:

• mij is the body mass

• ∑ fij is the sum of external forces acting on each link

• ∑ cnij is the sum of external moments including gravity effects acting of the body center
of mass

• cẍij is the acceleration to the center of mass of the ij link

• ω̇ij, ωij, are the rotational acceleration and velocity of the ij link

• cIij is the inertia matrix of the ij link expressed at its center of mass.

The NE equations describing the dynamics of the moving platform are expressed as:

fp = mc
pẍp

cnp = cIpω̇i + ωi × (cIpωp)
(2.2)

In which:
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• mp is the mass of the moving platform

• cIp is the inertia matrix of the moving platform expressed at its center of mass

• ẍp, and ω̇p are the linear and rotational acceleration of the moving platform

One can mention some literature works where NE formulation has been used to compute
Parallel robots’ dynamics. For instance, in [Borchert et al., 2015], the Newton-Euler equations
were employed to obtain the dynamic model of a 3-DOF Delta PKM. Also, in [Harib and
Srinivasan, 2003], the Newton-Euler method was applied to get the inverse dynamic model of
a Stewart platform.

Principle of virtual works

This principle establishes that the virtual work produced by external forces and moments
corresponding to any set of virtual displacement of a body or system of bodies is zero. Unlike
the NE formulation, this principle does not imply the unknown contains forces and moments,
resulting in less computational effort. The principle of virtual works applied to a system of N
bodies results in the following equation [Codourey, 1998]:

δW =
∑

(miẍi − fi) · δxi +
∑

(cIiω̇i + ωi × (cIiωi)− cni) · δθi = 0 (2.3)

Where δxi, and δθi represent the virtual linear and rotational displacement of the i body,
respectively. The previous equation can be adapted to a PKM with n number of limbs and a
moving platform as follows [Taghirad, 2013]:

δW = δqTΓ + δXT
p F̂p +

∑
δXT

i F̂i = 0 (2.4)

Where:

• δXp, and δXi represents the virtual displacements of the moving platform and limbs
center of masses, respectively

• δq denotes the virtual displacements of the joint variables

• Γ is the vector of the actuator forces

• F̂p and F̂p represent the difference between the generalized inertial forces/moments,
and the generalized external forces/moments acting on the moving platform center of
mass, and each limb center of mass, respectively, whose components are the following:

F̂p =
[

mpẍp − fp
Ipω̇p + ωp × (Ipωp)− np

]
F̂i =

[
mc
i ẍi − fi

cIiω̇i + ωi × (cIiωi)− cni

]
In which mp is the moving platform mass, Ip is the inertia moment of the moving platform,
and fp and np represent the external forces and moments acting of the moving platform.
The virtual displacements of the joint variables and the limbs are related to the virtual
displacement of the moving platform by means the following relations:

δq = JδXp δXi = JiδXp (2.5)
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Where J is the Jacobian matrix of the manipulator, and Ji is the limb Jacobian matrix.
Substituting (2.5) in (2.4) it yields:

δXT
p (JTΓ + F̂p +

∑
JTi F̂i) = 0 (2.6)

Finally, canceling δXT
p from the previous expression and rearranging terms. The dynamic

formulation of a PKM using the virtual works principle can be stated as follows:

Γ = −J−T (F̂p +
∑

JTi F̂i) (2.7)

The virtual work formulation has been extensively used in dynamic formulation of PKM as
can be seen in [Codourey, 1996], [Zhao and Gao, 2009], [Zhao et al., 2005], and [Li and Xu,
2005], among others works.

Euler-Lagrange formulation

Euler-Lagrange formulation describes the motion system based on the kinetic and potential
energy of the whole system. This formulation is suitable for dynamic analysis of multibody
systems where the forces and moments of each body interact with each other. The Lagrangian
function can be expressed in the following form:

L = K − U (2.8)

In which K and U represent the total kinetic and potential energy of the system, respectively.
According to [Taghirad, 2013], the Lagrange motion equations can be divided into two kinds
first kind and second kind. The simplest representation of them is the second kind, which is
expressed as:

d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj

= Qj, j = 1, 2, ...,m (2.9)

Where qj is the generalized coordinate, Qj represents the generalized force, and m expresses
the system’s independent generalized coordinates. The second kind of Lagrangian motion
equation is suitable for manipulators with open-loop configuration. However, the closed-loop
construction of PKMs introduces a set of constraint equations that must be introduced in the
motion equations leading the first kind of Lagrange motion equations, expressed in the next
equation:

d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj

= Qj +
k∑
i=1

λi
∂hi
∂qj

, j = 1, 2, ..., n (2.10)

Where k is the number of constraints, λi is the Lagrange multiplier, n represents the number
of redundant coordinates exceeding the number of DOF m by k, which is n = m+ k, and hi
is the constrain function. In order to compute the generalized forces Qj, it is necessary to
split up (2.10) in two sets [Tsai, 1999]. The first one contains the Lagrange multipliers as the
unknown variables, and the second one is the generalized forces as the unknown variables.
The first set can be written as:

k∑
i=1

λi
∂hi
∂qj

= d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj
− Q̂j, j = 1, 2, ..., k (2.11)
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Being Q̂j a generalized external force that is supposed to be known. Once the Lagrange
multipliers are found, the forces and/or torques of the actuators can be obtained through the
following expression:

Qj = d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj
−

k∑
i=1

λi
∂hi
∂qj

, j = k + 1, ..., n (2.12)

Some related works where Euler-Lagrange formulation has been used to obtain the dynamic
model equations in Parallel robots are [Ahmadi et al., 2008], [Park et al., 2013], and [Geng
et al., 1992], among others.

Simplified method for PKMs with delta-like structure

The computation of a suitable dynamic model for real-time implementation of PKMs represents
a significant challenge due to the large number of obtained equations, which can become
a problem due to the large number of computing resources that can be consumed by the
computer. Parallel robots with delta-like structure have linkages formed by two elements,
the first one is the rear-arm formed by a single piece, and the second one is the forearm,
which is constituted by two parallelogram bars. Obtaining the dynamic model of this type
of robots using only any of the three classic methodologies presented above would lead to
multiple real-time computing problems. For example, when using the NE formulation, the
forces and moments of all the robot elements must be considered, resulting in a large number
of equations that demand significant computational time to solve them. Alternatively, if
one chooses to use the principle of virtual works, the calculation of the inverse link-Jacobian
matrices will represent a laborious computation process. For PKMs based on the Delta PKM,
it has been proposed some hypothesis simplifications in [Nabat, 2007] to obtain a suitable
dynamic model for real-time implementation. The hypothesis simplifications are listed below:

• Since obtaining an accurate frictional model for PKMs, the frictional forces dry and
viscous are omitted in the analysis.

• The rotational inertia of the forearms is neglected. Nevertheless, its mass is divided
into two equivalent parts; one part is added to the rear-arm mass, and the other part is
joined to the traveling plate mass. This simplification is justified if the forearms’ mass
is smaller than the other components of the robot.

Concerning the second simplification, the ratio between the mass of the forearms and the
mass of the rear-arms must be sufficiently small (that is less or equal than 0.3 equaling to
a 2% error with respect to a complete dynamic model), as it is established on the analysis
developed for PKM with delta-like architecture in [Nabat, 2007] Figure 2.2 illustrates the
concept such model simplifications. The resulting equation of motion considering the above
simplifications will have the following form:

Γ(t) = Γact + Γp (2.13)

Where Γact ∈ Rn involves the forces/torque contributions of the actuators and the rear-
arms plus a half mass of the forearms, whereas that Γp ∈ Rn represents the forces/torque
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Figure 2.2: Illustration of modeling simplification for PKMs with delta-like architecture [Nabat,
2007]

contribution of the moving platform plus the other half mass of the forearm. This formulation
will be considered in Chapter 3 for the development of the dynamic models of the experimental
platforms.

2.2.2 Dynamic Modeling Representation

The dynamic study in robotic manipulators deals with the relationship between the generalized
forces and torques of a robotic system with its corresponding accelerations, velocities, and
position of the joints and end-effector of the manipulator. The dynamic analysis can be
divided into two branches [Staicu, 2019]:

• Forward Dynamics: It can be defined as given the set generalized forces and torques of
the robot, compute the resulting motion of the end-effector and joints as a function of
time. The Forward dynamic formulation expressed for the Cartesian space variables
can be represented as follows:

Ẍ = f(F, Ẋ,X) (2.14)

where X ∈ Rm is the vector of the Cartesian space coordinates and F ∈ Rm is the vector
of forces/torques applied on the moving platform. The representation of the Forward
dynamics in joint space is presented in the following form:

q̈ = f(Γ, q̇,q) (2.15)

where q ∈ Rn is the vector of joint space coordinates, and Γ ∈ Rn is the vector of
actuated joint force/torque.
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• Inverse Dynamics: It can be defined as given a set of trajectories for the end-effector
and actuated joints in the function of time, find the set of forces/torques that produce
the motion. This sentence may be represented in the following form for Cartesian and
joint space coordinates as follows:

F = f(Ẍ, Ẋ,X) (2.16)

Γ = f(q̈, q̇,q) (2.17)

The forces/torques applied to the end-effector and those produced by the actuated joints are
related by means the following expression:

F = JTΓ (2.18)

Being J ∈ Rm×n the Jacobian matrix of the manipulator. The inverse dynamic modeling
plays a vital role in real-time model-based controllers. Therefore, we will explain in more
detail expressions (2.16)-(2.17).

Representation of the Inverse Dynamic Model in joint space

The IDM of a robotic system with m DOF and n actuators can be represented for the joint
coordinates as follows [Kelly et al., 2006]:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Γ(t) (2.19)

In which

• q̈, q̇,q ∈ Rn The vectors of acceleration, velocity, and position of the robot in joint
space

• Γ ∈ Rn is the input torque vector

• M(q) ∈ Rn×n is the inertia matrix

• C(q, q̇) ∈ Rn×n is the Centripetal/Coriolis forces matrix

• G(q) ∈ Rn is the vector of produced forces due to gravity acceleration

This representation is the most common representation of the IDM for control applications
because most PKMs do not have sensors to measure the position of the traveling plate directly
with respect to the fixed coordinates system.

Representation of the Inverse Dynamic Model in Cartesian space

The IDM can be expressed in Cartesian coordinates by means the following relationships
based-on the Jacobian matrix.

q̇ = JẊ q̈ = JẊ + J̇Ẍ (2.20)
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Substituting (2.20) and (2.18) in (2.19), the IDM in Cartesian space can be written as [Taghirad,
2013]:

MXẌ + CXẊ + GX = JTΓ (2.21)

Where

• Ẍ, Ẋ,X ∈ Rm are the acceleration, velocity and position vector of the moving platform
of the PKM

• MX = JTM(q)J is the inertia matrix expressed in Cartesian space

• CX = JTM(q)J̇+JTC(q, q̇)J is the Centripetal/Coriolis matrix expressed in Cartesian
space

• GX = JTG(q) is the vector of produced forces due to gravity acceleration expressed in
Cartesian space

2.3 Overview of Motion Controllers for PKMs

In the literature, several control approaches have been proposed for motion control of parallel
robots. Many of them have been taken from control schemes implemented in serial robots since
they share similarities in the dynamic model’s mathematical representation. Control solutions
for robotics can be classified into two primary sorts: non-model-based and model-based
controllers [Saied et al., 2019b]. The first type is the easiest to implement since they do not
require any knowledge about the controlled system dynamics. In contrast, the second type of
controllers makes use of the whole or some portions of the inverse dynamic model. In most
cases, the obtained tracking performance using model-based controllers outcomes produced
by a non-model-based controller [Cheng et al., 2003]. Other possible classifications of control
laws of robotics are in non-adaptive and adaptive controllers [Bennehar, 2015]. Figure 2.3
presents a classification of control strategies for PKMs with some controllers examples existing
in the literature. Such examples will be briefly described in the next subsections of this
chapter except for those based on the RISE control, which will be described in greater detail
in Chapter 4.

2.4 Non-model-based controllers

As its name says, these control schemes do not need information about the dynamics of
the system to be controlled. All the necessary information lies in the measurement of the
system’s states (positions and velocities). Non-model-based controllers can be divided into
two categories: Non-adaptive and adaptive controllers, which will be discussed in greater
detail in the following subsections.
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Figure 2.3: Classification of implemented control schemes on Parallel Kinematic Machines
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2.4.1 Non-model-based-non-adaptive controllers

The implementation of these control schemes on parallel robots is generally easy and straight-
forward since they do not require any prior knowledge about the manipulator dynamics.
The data providing from the robot states are processed in a feedback control loop, which
sends the control commands to the robot actuators. Most of them have fixed feedback gains
providing relatively good performance for not very demanding tasks. However, to increase
these controllers’ robustness against external disturbances, it has been proposed to replace
the fixed gains by nonlinear time-varying gains. So let us start with the description of them.

PD/PID Controllers

The Proportional-Integral-Derivative (PID) controller [Ziegler et al., 1942] is the most exten-
sively used controller in the industry even to these days, thanks to its simplicity and relatively
good performance. However, the performance of this controller decreases considerably if the
system is subjected to high accelerations. In the literature, PID control has been implemented
in parallel robots in both joint space [Ren et al., 2007] and Cartesian space [Natal et al., 2015].
For joint space, the equation of the PID controller can be written as:

Γ(t) = Kpeq(t) + Kd
d

dt
eq(t) + Ki

∫ t

0
eq(τ)dτ (2.22)

Where Kp, Kd, and Ki ∈ Rn×n are positive definite diagonal gains matrices for the pro-
portional, derivative, and integral actions, respectively. The tracking error in joint space
eq(t) = qd(t)−q(t) is defined as the the difference between the desired trajectory in join space
qd(t) ∈ Rn, and the measured one q(t) ∈ Rn. (2.22) represents the most common way to
implement the PID control on PKMs since most of them only dispose of encoders to estimate
the joint position of the actuators. Nevertheless, for those PKMs disposing of sensors that
allow them to estimate the position of the moving platform directly, it is recommended to
implement the PID controller in Cartesian space. Its expression is slightly different from the
previous one.

F(t) = KpeX(t) + Kd
d

dt
eX(t) + Ki

∫ t

0
eX(τ)dτ (2.23)

Where eX(t) = Xd(t)−X(t) denotes the tracking error in Cartesian space, being Xd(t) ∈ Rm,
the desired trajectory, and X(t) ∈ Rm the measured one, Kp, Kd, and Ki ∈ Rm×m are the
controller gains . Since (2.23) computes F(t) instead of Γ(t), the control signals for the
actuators must be computed trough the Jacobian matrix J ∈ Rm×n, or the pseudoinverse
Jacobian matrix H ∈ Rm×n if the PKM is non-redundantly or redundantly actuated. These
relationships are indicated in (2.17) and (2.18).

Nonlinear PD/PID Controllers

Nonlinear PD/PID controllers arise from the need to improve the response and tracking
performance of standard PID controllers with fixed gains. The nonlinear time-varying
gains endow the controller with the ability to reject external disturbances. Furthermore,
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this controller is less sensitive than its counterpart with fixed gains [Seraji, 1998]. The
mathematical expression of the Nonlinear PID controller applied to a robotic manipulator
can be written in terms of the joint space variables as:

Γ(t) = Kp(.)eq(t) + Kd(.) d
dt

eq(t) + Ki(.)
∫ t

0
eq(τ)dτ (2.24)

Where Kp(.), Kd(.), and Ki(.) ∈ Rn×n are the nonlinear time-varying feedback gains for
the proportional, derivative, and integral actions, respectively. The controller gains are
automatically adjusted according to a series of rules based on the measurement of the error
tracking signal. If the tracking error is large, the gains’ values will increase their values, making
a quick correction action. Once the error is diminished, the feedback gains are automatically
reduced to avoid excessive oscillations and overshoots. Several methodologies have been
proposed in the literature to adjust the nonlinear time-varying feedback gains [Ouyang et al.,
2002], [Armstrong and Wade, 2000], [Seraji, 1998], among others. One can mention an example
application in parallel robots. For instance, in [Su et al., 2004], a nonlinear PID controller in
joint space was proposed to regulate the positioning of a 6-DOF PKM.

2.4.2 Non-model-based-adaptive Controllers

Controller schemes of this do not consider any information on the system dynamics. However,
They exploit the information available from the system states to online-estimate nonlinearities,
uncertainties, and in some cases, the system dynamic behavior. If the adaptation law is
designed to estimate the system’s uncertainties and nonlinearities, then the controller will
take action to reduce the effects produced by them. On the other hand, if the adaptation law
is designed to estimate the system’s dynamics, this will be integrated as a compensation term
in the controller scheme. Some control schemes that belong to this category are:

L1 Adaptive Control

L1 adaptive control is a recent control strategy published for the first time in [Cao and
Hovakimyan, 2006a] and [Cao and Hovakimyan, 2006b]. This control technique is inspired in
the MRAC (Model Reference Adaptive Control) but decoupling the feedback control loop
from the adaptive estimation loop. Moreover, this controller guarantees the controller signals
to stay in the low-frequency range. In [Bennehar et al., 2015a], the first implementation of the
L1 control in a PKM is reported. Two independent terms compose the controller equation, a
fixed state-feedback term characterizing the evolution of the transient response of the PKM
and an adaptive term that compensates for the nonlinearities of the system, as follows:

Γ(t) = Amr(t) + Γad(t) (2.25)

Where Am ∈ Rn×n is the Hurwitz matrix , r(t) ∈ Rn is the combined tracking error in joint
space r(t) = ėq(t) + Λeq(t) where Λ ∈ Rn×n is a positive definite gain matrix. The adaptive
control term Γad(t) is the output of the following equation:

Γad(s) = C(s)η̂(s) (2.26)
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In which, η̂(s) is the Laplace transform of η̂(t) = θ̂(t)||r(t)||L∞ + ς̂(t), and C(s) is a low-pass
filter. θ̂(t), and ς̂(t) are nonlinear estimation functions for the nonlinearities and disturbances
of the system, respectively. The procedure to estimate such nonlinear functions is detailed
in [Bennehar, 2015], [Bennehar et al., 2016a], and [Hovakimyan and Cao, 2010].

Active Disturbance Rejection Control

Similar to the L1 adaptive controller, the Active Disturbance Rejection Control (ADCR)
does not require any knowledge about the dynamics of the system to be controlled. This
controller on-line estimates nonlinearities and parametric uncertainties for a subsequent proper
cancellation of them. The estimation is frequently obtained trough Extend State Observers
(ESOs) being a kind of high gain observers [Gao, 2006]. To understand the logic of this control
law in broad strokes, the dynamic model of a robot must be expressed as follows:

q̈ = M(q)−1Γ−M(q)−1[C(q, q̇)q̇ + G(q)] (2.27)

The previous model can be represented in state variables as follows:

ẋa(t) = xb(t)
ẋb(t) = f(ẋT (t)) + g(xa(t))Γ(t) + χ(xT (t), t)

(2.28)

Where xT ∈ R2n is the robotic system state vector that is xT = [xa xb]T . Being xa = q, and
xb = q̇, the term χ(xT , t) considers the presence of uncertainties and non-modeled sections.
With the system structure presented in (2.28) it is proceeded to design the high gain observer
resulting in a control law with the following structure.

Γ(t) = −g(xa)−1(HT x̂T (t) + Λ̂(t)x̂T (t)) (2.29)

In which, H ∈ R2n is a linear constant gain matrix, and Λ̂ ∈ R2n×n is a matrix containing
the time-varying parameters which are adjusted by an adaptive rule based on the least mean
square error. ADRC was implemented successfully to a 3-DOF Delta PKM in [Castañeda
et al., 2014].

2.5 Model-Based-Controllers
Control schemes belonging to this category incorporate complete or partial knowledge of
the dynamics of the system to reduce the effects of nonlinearities, enhancing the overall
performance of the robotic system. In most of the cases reported in the literature, the
performance obtained through these control schemes far exceeds that of non-model-based
controllers [Saied et al., 2019b].

2.5.1 Model-based-non-adaptive Controllers

As the name of this subcategory indicates, the estimated dynamic parameters of the robot
always remain fixed, which has certain advantages and disadvantages. On the one hand, if exist
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precise knowledge of such parameters, the performance obtained will be satisfactory. However,
if such parameters are poorly estimated, instead of improving the robot’s performance, it will
worsen. Some examples of this type of control schemes are:

Computed Torque Control

Computed Torque Control (CTC), also known in some literature as Inverse Dynamics Control
(IDC) [Taghirad, 2013], is a control technique that has been widely applied in the control of
robotics. It is a non-adaptive control technique that allows us to obtain a linear closed-loop
equation in terms of the state variables. This control technique may provide an excellent
tracking performance if the system parameters are precisely known. The control equation
applied to any manipulator in joint space can be established as follows [An et al., 1987]:

Γ(t) = M(q)(q̈d + Kpeq(t) + Kdėq(t)) + C(q, q̇)q̇ + G(q) (2.30)

where Kp,Kd ∈ Rn×n are positive definite diagonal gains matrices for the proportional,
and derivative actions respectively. eq(t) ∈ Rn, and ėq(t) ∈ Rn are the tracking errors or
the joint positions and velocities, respectively. Substituting this control law in the inverse
dynamic equation in joint space for a manipulator (2.19), leads the following closed-loop
system dynamics:

ëq(t) + Kdėq(t) + Kpeq(t) = 0 (2.31)

In which ëq represents the acceleration error in joint space. It is worth to note that the
previous equation is valid only if all dynamic parameters are perfectly known. Moreover,
as can be seen in (2.28), if the controller gains are chosen correctly, the tracking error can
converge quickly towards zero with suitable steady-state performance. However, this control
technique is computationally intensive, and the use of the measured variables as joint positions
and velocities yields noise that may harm the system performance. In [Lou et al., 2011], the
CTC was used to regulate the positioning of a 3-DOF PKM called Orthopod.

Augmented PD Control

This control law is also known as PD+. It is composed of a PD feedback controller plus
the inverse dynamic model equation of the robot evaluated with the desired trajectories and
the measured ones. One key difference between it and the CTC is that the inertia matrix is
outside the position and velocity feedback loops yielding a faster computation process [Paden
and Panja, 1988]. The controller equation is relatively simple, and it can be expressed as:

Γ(t) = Kpeq(t) + Kdėq(t) + M(q)(q̈d) + C(q, q̇)q̇d + G(q) (2.32)

where Kp,Kd ∈ Rn×n are positive definite diagonal gains matrices for the proportional, and
derivative actions respectively. eq(t) ∈ Rn, and ėq(t) ∈ Rn are the tracking errors or the
joint positions and velocities, respectively. The feedback PD controller guarantees asymptotic
stability, and the model-based part cancels the effect of some nonlinearities. However, to this
end, the dynamic parameters used in the equation must be relatively close to the real ones.
The original PD+ has been modified in different ways to improve its features. For instance,



2.5. MODEL-BASED-CONTROLLERS 41

in [Müller and Hufnagel, 2012], a PD+ controller in redundant coordinates was proposed as
an alternative to coordinate switching and applied to the control of redundantly actuated
PKM.

PD Computed Feedforward Control

This controller consists of a PD controller plus the nominal feedforward terms. Its expression
is similar to the previous controller. However, the whole inverse dynamic model is evaluated
with the desire trajectories instead of the measured ones since the sensors used to measure
the actual joint variables may carry out the noise, which can impair robot performance. PD
feedforward is one of the most used control techniques in robotic due to its simplicity, and it
can provide asymptotic stability. The expression is given as follows [Santibañez and Kelly,
2001]:

Γ(t) = Kpeq(t) + Kdėq(t) + M(qd)q̈d + C(qd, q̇d)q̇d + G(qd) (2.33)
where Kp,Kd ∈ Rn×n are positive definite diagonal gains matrices for the proportional, and
derivative actions respectively. eq(t) ∈ Rn, and ėq(t) ∈ Rn are the tracking errors or the
joint positions and velocities, respectively. In [Sartori-Natal et al., 2012], a modified version
of the standard PD feedforward called “Dual-Space Control” was validated experimentally
in an RA-PKM called R4. The difference between this control scheme from the standard
PD feedforward is that the dynamic model part is formulated in both coordinate systems,
Cartesian and joint space, and not only in one as happens with the original one formulation.

Higher Order Sliding Mode Control

Sliding Mode Controllers (SMCs) are robust nonlinear control techniques appropriate for
nonlinear uncertain systems. The main feature of these control schemes is the use of a
discontinuous function with a high control gain leading finite-time convergence and robustness
of the closed-loop system. However, these controllers have an inconvenience regarding the
produced undesirable high-frequency oscillations called chattering [Utkin and Lee, 2006]. This
unwanted phenomenon is too dangerous for the system actuators. Therefore, to overcome
that issue, Higher-Order Sliding Mode Controllers (HOSMCs) have been proposed. Many
methodologies based on HOSMCs have been proposed for the control of PKMs. For instance,
in [Schindele and Aschemann, 2010], a trajectory control based on a HOSMC was implemented
on a PKM with 2-DOF driven by pneumatic muscle actuators. In [Kumar and Bandyopadhyay,
2012], a HOSMC was proposed for the stabilization of a Stewart-platform. The velocities
of such robots were estimated trough an observer based on the super-twisting algorithm.
Numerical simulations were performed to known the effectiveness of the controller.

2.5.2 Model-based-adaptive Controllers

Model-adaptive-based controllers emerge because, in reality, the dynamic parameters of a
manipulator (as masses or inertia) are challenging to know with precision, and most of the
time, some of such parameters vary according to the assigned task. Many of the control
schemes belonging to this subcategory are improvements of those model-based with fixed
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parameters. Therefore, the dynamic model representation must be rewritten, decoupling
the dynamic parameters from known linear and nonlinear functions of the dynamic model.
Considering (2.19), IDM is reformulated as:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Y(q, q̇, q̈)Φ (2.34)

In which Y(q, q̇, q̈) ∈ Rn×r is known as the regressor matrix involving all linear and nonlinear
functions of the model dynamics, and Φ ∈ Rr is the vector parameters, where the superscript
r indicates the number of parameters. The right side of (2.34) will be considered in the
description of the following control solutions.

Adaptive Computed Torque Control

This extension of the classical CTC presented before arises because, in most cases, the
dynamic parameters are not well known, or they are time-varying. Consequently, the
presented nonlinearities of the system are not entirely canceled by the controller. Therefore,
an estimator algorithm should be considered in order to estimate in real-time such unknown
parameters. Taking into account (2.30), we can express the closed-loop system for Adaptive
Computed Torque Control (ACTC) as [Craig et al., 1987]:

ëq(t) = −Kpeq(t)−Kdėq(t) + M̂−1(q)Y(q, q̇, q̈)eΦ (2.35)

In which, M̂ ∈ Rn×n is the estimation of the manipulator inertia matrix, Y(q, q̇, q̈) is the
regressor matrix evaluated with the measured joint variables, and eΦ is the vector of parameter
errors which is given as eΦ = Φ − Φ̂ being Φ the parameter vector, and Φ̂ its estimated
vector. The adaptation law is formulated using the following Lyapunov function candidate:

V (εq, eΦ) = εTq Pεq + eTΦΞ−1eΦ (2.36)

Where εq =
[
ėq eq

]T
, P is a positive-definite matrix designed to satisfy the Lyapunov

equation, and Ξ is a positive-definite constant matrix defined for the adaptation law, which
can be expressed as:

˙̂
Φ = ΞYTM̂−1r(t) (2.37)

Being r(t) the combined tracking error in joint space r(t) = ėq(t) + Λeq(t), and Λ ∈ Rn×n is
a positive definite gain matrix. However, like its non-adaptive counterpart, ACTC has the
drawback of using measured velocities and accelerations, which are tedious to estimate. This
control scheme was applied in [Shang et al., 2012] to a RA 2-DOF planar parallel robot, the
obtained performance was compared to a classical CTC. The results showed a considerable
tracking performance improvement of ACTC compared to CTC. Figure 2.4 illustrates the
control scheme differences between CTC and ACTC.

PD with Adaptive Feedforward

PD control with adaptive feedforward is one of the simplest adaptive controllers-based that
can be implemented on robotics. Two parts form the controller. On one hand, the PD feedback
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Figure 2.4: Block diagram comparison of standard CTC (blue) and ACTC (green)

controller keeps the system stability, and by the other hand, the adaptive feedforward term
intends to cancel nonlinearities and reduce the effect produced by parametric uncertainties.
For robotics, the mathematical expression of this controller can be defined as [Honegger et al.,
1997]:

Γ(t) = Kpeq(t) + Kdėq(t) + Y(qd, q̇d, q̈d)Φ̂ (2.38)

Where Kp and Kd ∈ Rn×n are positive-definite diagonal gains matrices for the proportional
and derivative action, respectively, Φ̂ ∈ Rr is the vector of unknown dynamic parameters
being r the number of its elements and Y(qd, q̇d, q̈d) ∈ Rn×r, is the regressor matrix. The
unknown dynamic parameters are estimated according the following adaptation rule:

˙̂
Φ = KY(qd, q̇d, q̈d)T (Kpeq(t) + Kdėq(t)) (2.39)

Where K ∈ Rr×r is a positive-definite diagonal matrix that must be carefully adjusted to
obtain a good estimate of the parameters while maintaining the controller’s stability. This
control scheme was implemented in real-time to regulate the positioning of a 4-DOF PKM
called Veloce. The performance obtained was compared to that produced by a PID controller.
The results showed a vast superiority of the PD adaptive feedforward controller over the PID
controller [Saied et al., 2019b].

Desired Compensation Adaptive Control

Desired Compensation Adaptive Control (DCAL) was initially reported in [Sadegh and
Horowitz, 1990], this model-based control scheme is formed by three parts, a decentralized
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PD controller, an adaptive feedforward term, and an auxiliary nonlinear compensation term.
The controller equation can be written in the following form [Bennehar et al., 2016b]:

Γ(t) = Kpeq(t) + Kvr(t) + Y(qd, q̇d, q̈d)Φ̂ + ϑ||eq(t)||2r(t) (2.40)

Where Kp,Kv ∈ Rn×n are positive definite diagonal gains matrices, r(t) ∈ Rn is the combined
tracking error in joint space formulated as r(t) = ėq(t) + Λeq(t). The parameter estimation
vector can be formulated by the following expression:

˙̂
Φ = KYT (qd, q̇d, q̈d)r(t) (2.41)

Being K ∈ Rn×n a positive-definite adaptation gain matrix. One can highlight the following
advantages of the DCAL controller: Reduced computing time thanks to using the desired joint
trajectories instead of the measured joint variables in the regressor matrix and the parameters
adaptation rule, noise effect reduction, and compensation for parametric uncertainties and
nonlinearities. In [Bennehar et al., 2014a], DCAL control was applied to an RA-PKM called
dual-V. In the same work, the fixed gains for the feedback controller part were substituted by
time-varying nonlinear ones in order to improve the overall performance of the parallel robot.

Dual-mode Adaptive Control

This control scheme was implemented on Par2 PKM, it consists of three terms: an adaptive
feedforward term, a smooth variable structure term, and a stabilizing term. Dual-mode
adaptive control equation can be expressed as follows [Natal et al., 2016]:

Γ(t) = Kr(t) + d
αsr(t)

||αsr(t)||+ 1 + Y(qd, q̇d, q̈d)â (2.42)

Where K ∈ Rn×n is a positive-definite gain matrix, α, and d are positive constants. â
represents an estimation of the unknown parameters of the system ânom. The adaptation rule
is given as follows:

˙̂
Φ = −γProj(r(t)TY, Φ̂) = −σrΦ̂− γr(t)T (2.43)

In which, Φ̂ is the difference between the currently estimated values and the nominal values
of the parameters, γ is the adaptation gain constant, and σr is a variable adjusted as follows:

σr =
{

0 if ||Φ̂|| < MΦ or σeq < 0
σeq if ||Φ̂|| ≥MΦ or σeq ≥ 0

(2.44)

σeq = −γr(t)TYΦ̂

||Φ̂||2
(2.45)

Where MΦ is the maximum possible value of the inertia matrix, and ||Φ̂||2 is the 2-norm
of Φ̂. According to [Natal et al., 2009], the adaptation law of Dual-Mode adaptive control
provides some advantages concerning other robust control algorithms as the generation of
continuous control signals, improvement in system robustness, lees sensitivity to measurement
noises. Moreover, for large tracking errors, the controller behaves like a sliding mode controller
generating exponential convergence to a residual domain arbitrarily small, and to smaller
errors, it behaves as a parametric adaptation law.
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Figure 2.5: Block diagram of L1 adaptive controller for PKM (blue), plus adaptive feedforward
compensation (green)

L1 Adaptive Control with adaptive Feedforward

Although the original L1 adaptive controller does not require knowledge of the dynamics of
the system, there are still nonlinearities and uncertainties in which the adaptive compensation
term Γad(t) has not been able to eliminate. In order to improve the capabilities of the original
L1 adaptive controller, in [Bennehar et al., 2015b], it was proposed to integrate a model-based
adaptive feedforward term used to diminish further the effect of such nonlinearities and
uncertainties of the system. Thus, (2.25) is extended as:

Γ(t) = Amr(t) + Γad(t) + Y(qd, q̇d, q̈d)Φ̂ (2.46)

Where Y(qd, q̇d, q̈d) ∈ Rn×r, is the regressor matrix, and Φ̂ ∈ Rr, is the vector of estimated
dynamic parameters whose elements are computed using the adaptation rule presented in
(2.37). This control law was validated experimentally on the RA-4-DOF Arrow PKM. The
obtained results showed an improvement in the trajectory tracking of more than 78% compared
to the original L1 adaptive controller. Figure 2.5 presents the control diagram of standard L1
adaptive controller in color blue plus the adaptive-model-based term proposed in [Bennehar
et al., 2015b] in green color.

Adaptive Terminal Sliding Mode Control

Terminal Sliding Mode Controllers (TSMCs) are a kind of HOSMCs with finite-time con-
vergence, maintaining the robustness of conventional SMCs. The first designs of TSMCs
had a singularity issue stemming from the design of the sliding manifold [Venkataraman and
Gulati, 1992]. Nevertheless, in some research works, it has been proposed solutions to deal



46 CHAPTER 2. STATE OF THE ART

with such a problem re-designing the sliding manifold [Feng et al., 2002]. Considering the
features providing by TSMCs and adaptive controllers. In [Bennehar et al., 2017], a novel
adaptive TSMC was proposed for motion control of PKMs where an adaptation loop on-line
estimates the unknown, uncertain, and time-varying parameters of the model-based control
loop. The control law can be expressed as:

Γ(t) = Y(qd, q̇d, q̈d)Φ̂−K1s−K2|s|ρsgn(s) (2.47)

In which, Y(qd, q̇d, q̈d) ∈ Rn×r, is the regressor matrix evaluated with the desired joint
trajectories, and Φ̂ ∈ Rr, is the vector of estimated dynamic parameters, K1, K2 ∈ Rn×n

are positive-definite diagonal gain matrices, and ρ is an auxiliary control term. The sliding
manifold is designed as s = eq + β|ėq|γsgn(ėq), being 0 < γ < 2 and β > 0 control design
parameters. The unknown parameters are estimated according the following adaptation rule

Φ̂ = −Ξ(qd, q̇d, q̈d)T (K3s + K4|s|ρsgn(s)) (2.48)

Where ΞRr×r is a positive-definite diagonal gain matrix known as the adaptation gain matrix,
and K3,K4Rn×n are design matrices for the adaptation law. This adaptive TSMC was
validated with real-time experiments on a PKM called Veloce in [Bennehar et al., 2017]. The
obtained tracking performance was compared to the produced by nominal TSMC, obtaining
an improvement of more than 50%.

2.6 Conclusion
This chapter presented a summary of the three main formulations to derive the motion
equations for any parallel robot, including a simplified formulation appearing in the literature
for PKMs with a delta-like structure that makes use of NE equations and the principle
of virtual works. This formulation aims to generate a suitable inverse dynamic model for
real-time implementations in the controller loop. Moreover, this chapter presented an overview
of existing control solutions already implemented on PKMs. Such control solutions were
classified into two principal categories Non-model-based and model-based controllers. Both
categories are also divided into two branches non-adaptive and adaptive controllers. One
can highlight that non-model-based non-adaptive controllers are easy and straightforward for
real-time implementation. However, according to the literature, their performance is poor
when the robot is required to operate at high speeds/accelerations and uncertainties present
due to the operating environment. On the other hand, model-based-adaptive controllers may
present the best tracking performance compared to other control categories mentioned before
due to their very elaborate design. Nevertheless, the tuning of their gains is not easy, owing
to the presence of multiple control elements.
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3
C h a p t e r

Description and Modeling of
Experimental Platforms

In this chapter, the analysis concerning kinematic and dynamic analysis for two PKMs with
delta-like architecture is introduced. The robots are the SPIDER4 RA-PKM with 3T-2R-DOF
and a Delta PKM with 3T-DOF. The first one is a redundantly actuated PKM, as long as the
last one is a fully non-redundant PKM. The inverse kinematic modeling for both
manipulators is obtained trough the closed-loop equation being formulated by a geometric
analysis of the kinematic chains. The forward kinematic model for both PKMs is obtained
solving the intersection of virtual spheres whose radii are related with the forearms’ length.
The Jacobian matrices are derived for the geometric analysis of the PKMs. Finally, the IDM
for both PKMs is presented, where some hypothesis simplifications were considered.

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Redundant PKM (SPIDER4) . . . . . . . . . . . . . . . . . . . . . 50
3.3 Non-Redundant PKM (Delta) . . . . . . . . . . . . . . . . . . . . . 63
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1 Introduction
Modeling is a crucial part of the study of any robotics system since it allows us to know the
behavior of the mechanism and how the different mechanical parameters affect the system’s
overall performance. Additionally, it helps in the design of control schemes to precisely
regulate the robot movement. The kinematic analysis studies the geometry of a robot’s
motion, but without considering the forces or torques that produced the motion [Taghirad,
2013]. The mostly kinematic models in PKMs have developed form geometric analysis of the
kinematic chains resulting in an expression involving the joint and Cartesian variables called
the closed-loop equation [Merlet, 2006]. Obtaining the IKM in PKM is a relatively easy and

49



50
CHAPTER 3. DESCRIPTION AND MODELING OF

EXPERIMENTAL PLATFORMS

straightforward task, unlike serial manipulators. However, obtaining the FKM is a complex
task for the majority of PKMs configurations because it involves highly coupled nonlinear
equations with a not unique solution. The aim of this chapter is the development of the
different kinematic and dynamic models for two PKMs. One is a RA-PKM called SPIDER4,
and the other robot is a non-RA-PKM (the Delta robot). As was stated in Chapter 1, one of
the main thesis objectives is the modeling of SPIDER4, so we will first focus on developing the
kinematic and dynamic models of this platform, then we will present the modeling equations
for the 3-DOF Delta PKM.

3.2 Redundant PKM (SPIDER4)

3.2.1 Description and Modeling of SPIDER4

SPIDER4 is a novel RA-PKM designed and manufactured in collaboration between The
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM),
and Tecnalia company. This machine is conceived for CNC machining tasks of resin materials.
It has 5-DOF: 3 translations denoted by (x, y, z) and 2 rotations denoted by (φ,ψ). The
translational motion is performed by the parallel structure consisting of four kinematic chains,
each one formed by one arm and one forearm linked by a passive universal joint. Each arm is
connected directly to an electric motor located in the fixed base, and the forearm is connected
to the moving platform through two parallel bars, in a PKM Delta-like architecture. The
rotational motions are generated by an independent serial wrist mechanism placed on the
nacelle, which is actuated through two electric motors. The machining spindle is placed at the
end of this mechanism. Figure 3.1 shows SPIDER4 RA-PKM and its kinematic configuration
diagram, where the gray boxes represent the active rotational joints, and the white boxes
represent the passive universal joints. To develop a machining task, SPIDER4 makes use
of a tooling plate to fix the raw material. The material’s maximum dimensions must be a
cylinder of 700mm diameter and 300mm depth. The machine and its tooling plate are inside
an enclosure for operator safety; its dimensions are 3.9x2.5x2.4 m (LxWxH), as Figure 3.2
illustrates. It is worth to mention that SPIDER4 can be equipped with linear encoders to
measure directly the position of the nacelle form the origin of the fixed base. However, for
the control tasks developed in this research, such sensors will not be considered; only the
rotary encoders integrated with the motors will be used. The different elements of composing
SPIDER4 are described in detail in Figure 3.3.

3.2.2 Inverse Kinematic Model of SPIDER4 RA-PKM

Let us start with the development of the IKM for SPIDER4, which consists of finding the
generalized coordinates vector Q =

[
q1 q2 q3 q4 φ ψ

]T
∈ R6×1 given the spindle position

in the fixed reference frame O − xo, yo, zo as oSS =
[
x y z φ ψ

]T
∈ R5×1. It is worth

mentioning that the variables φ, ψ are the same for operational and joint spaces; in addition,
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(a) View of SPIDER4 PKM.
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Figure 3.1: The SPIDER4 RA-PKM and its kinematics
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Figure 3.2: Enclosure dimensions of the working area of SPIDER4
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Figure 3.3: CAD View of SPIDER4 with its main components description

it is possible to define a vector which only involves the SPIDER4 parallel structure joint
variables q =

[
q1 q2 q3 q4

]T
∈ R4×1. SPIDER4 shares several similarities with the Delta

PKM; in fact, their kinematic composition for both PKMs is composed of one rear-arm and
one forearm formed by two parallel bars. Nevertheless, SPIDER4 has a wrist mechanism on
the nacelle. Therefore, before to formulate the kinematic equations of the delta-like positioning
device, it is indispensable to develop the kinematic relations of the wrist to get the position
of the nacelle denoted as oNN =

[
xn yn zn

]T
∈ R3×1. Considering the kinematic diagram

of SPIDER4 depicted in Figure 3.4, we establish the following rotation matrices to derive the
kinematics relationships of the wrist mechanism.

RZ =

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 ,RY =

 cos(ψ) 0 sin(ψ)
0 1 0

− sin(ψ) 0 cos(ψ)

 (3.1)

The above expressions involve the wrist mechanism variables (φ, ψ), consequently oNN can
be defined as follows:

oNN =

 x
y

z + Aoffset

+ RZRY

 0
0

Soffset

 (3.2)
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54
CHAPTER 3. DESCRIPTION AND MODELING OF

EXPERIMENTAL PLATFORMS

Reducing the equation (3.2) oNN results in:

oNN =

 x+ Soffset cos(φ) sin(ψ)
y + Soffset sin(φ) sin(ψ)
z + Soffset cos(ψ) + Aoffset

 (3.3)

where Soffset is the distance between the ψ joint axis and the tip of the spindle, and Aoffset is
the distance between the center of the nacelle and the ψ joint axis. Once oNN is computed,
we can set the active and passive joints locations with respect to the Cartesian-fixed frame
O−xo, yo, zo. The actuated joints located in the points Ai, ∀i = 1...4, are expressed respecting
the fixed reference frame by the following vector:

oAi = Rb

[
cos(αi) sin(αi) 0

]T
(3.4)

Where Rb is the fixed-base radius. The four main actuators are placed on the fixed base with
the following angles with respect to the fixed Cartesian frame α =

[
7π
4

5π
4

3π
4

π
4

]T
.The

universal passive joints are located at the points Bi and Ci whose coordinates are expressed
in the fixed reference frame O − xo, yo, zo as follows:

oBi = oAi + L
[
cos(αi) cos(qi) sin(αi) cos(qi) − sin(qi)

]T
(3.5)

oCi =
[
Rp cos(αi) + xn Rp sin(αi) + yn zn

]T
(3.6)

being L the arm length and Rp the nacelle radius. For further analysis an auxiliary frame
located at oAi-xi, yi, zi is defined, where two auxiliary vectors ixi and iyi are defined as:

ixi =
[
cos(αi) sin(αi) 0

]T
(3.7)

iyi =
[
− sin(αi) cos(αi) 0

]T
(3.8)

The expression relating the operational nacelle variables oNN with the parallel structure joint
variables q is called the close-loop equation, which can be defined as:

||oCi −o Bi||2 = l2i (3.9)

According to [Pierrot, 1991] , [Clavel, 1991] the mathematical expression (3.9) can be rewritten
as follows in order to obtain the values of the joint variables q.

Di sin(qi) + Ei cos(qi) + Fi = 0 ∀i = 1, 2, 3, 4 (3.10)

where Di = 2Li(oAo
iCi · zo), Ei = 2Li(oAo

iCi ·i xi), and Fi = l2i −L2
i − ||oAo

iCi||2. The values
of qi are obtained by solving for (3.10), resulting in the following expression:

qi = arctan
(
−Di ±

√
∆i

Fi − Ei

)
(3.11)

Being ∆i = D2
i + E2

i − F 2
i . The kinematic parameters of SPIDER4 as lengths of the limbs,

the radius of the fixed base, and nacelle were obtained from the CAD model provided by
Tecnalia Company. Thereby, the kinematic parameters of SPIDER4 are known with enough
precision. These parameters are presented in Table 3.1.
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Table 3.1: Summary of the kinematic parameters of SPIDER4
Parameter Description Value

L Rear-arm length 0.535 m
l Forearm length 1.100 m
Rb Fixed base radius 0.4 m
Rp Nacelle radius 0.260 m
Soffset Distance between ψ and oSS 1.135 m
Aoffset Distance between oNN and ψ 0.198375 m

3.2.3 Forward Kinematic Model of SPIDER4 RA-PKM

Generally, obtaining the FKM in PKMs is a complex task since it requires to solve multiple
coupled nonlinear algebraic equations yielding multiple solutions. Notwithstanding, for
PKMs with delta-like architecture, the FKM solution is relatively straightforward owing to
the configuration based-on parallelograms restricting the orientation of the traveling plate
allowing linear translation motion only [Taghirad, 2013]. The FKM solution for this kind
of configuration is finding the intersection of nth virtual spheres whose radii are equal to
the forearms’ length [Williams II, 2016]. For SPIDER4, the FKM is computed in two steps;
the first is to find oNN ∈ R3×1 when q ∈ R4×1 is given; in other words, we have to compute
the FKM of the delta-like positioning device. The second step lies in computing the spindle
position oSS once oNN has been found. Figure 3.5 illustrates the intersection algorithm of four
virtual spheres to obtain the FKM of SPIDER4. According to this figure, one can see that
this method leads to two solutions; however, it is easy to choose the appropriate solution for
the FKM taking into account the robot’s geometry. The virtual spheres centers for SPIDER4
are established by means the following kinematic expression:

oB′i =o Bi −N Ni ∀i = 1, ..., 4 (3.12)

Where
NNi =

[
Rp cos(αi) Rp sin(αi) 0

]T
(3.13)

The equations of the four virtual spheres to obtain the FKM of the SPIDER4 delta-like
positioning device are given as follows:

x2
n + y2

n + z2
n − 2x1xn − 2y1yn − 2z1zn + w1 = l2

x2
n + y2

n + z2
n − 2x2xn − 2y2yn − 2z2zn + w2 = l2

x2
n + y2

n + z2
n − 2x3xn − 2y3yn − 2z3zn + w3 = l2

x2
n + y2

n + z2
n − 2x4xn − 2y4yn − 2z4zn + w4 = l2

(3.14)

In which, xi, yi, zi ∀i = 1, ..., 4, represent the coordinates of the center of each virtual sphere,
and wi = x2

i + y2
i + z2

i ∀i = 1, ..., 4. The solution of the equations’ system (3.14) that
corresponds to the nacelle position is given as follows:

xn = d2zn + e2 (3.15)
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Figure 3.5: Illustration of the four virtual spheres intersection used to find oNN position

yn = d1zn + e1 (3.16)

zn = −b−
√
b2 − 4ac

2a (3.17)

Where the auxiliary constants that are involved in expressions (3.15)-(3.17) are defined as
follows:

a1 = y1 − y3

x3 − x1
b1 = z1 − z3

x3 − x1
c1 = w3 − w1

2(x3 − x1) d1 = b2 − b1

a1 − a2
e1 = c2 − c1

a1 − a2

a2 = y2 − y3

x3 − x1
b2 = z2 − z3

x3 − x2
c2 = w3 − w2

2(x3 − x2) d2 = a1d1 + b1 e2 = a1e1 + c1

a = d2
1 + d2

2 + 1
b = 2[(e1 − y4)d1 + (e2 − x4)d2 − z4]
c = e2

1 + e2
2 − 2(e1y4 + e2x4) + w4 − l2

Once the positions of the nacelle (xn, yn, zn) are found, an auxiliary vector is defined in order
to find the spindle position; the auxiliary vector involves the variables of the wrist mechanism
(φ, ψ), and is expressed as:

oNaux =o NN −

 Soffset cos(φ) sin(ψ)
Soffset sin(φ) sin(ψ)
Soffset cos(ψ) + Aoffset

 (3.18)

Finally, the spindle position is defined through the following expression:
oSS =

[
oNT

aux φ ψ
]T

(3.19)
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3.2.4 Velocity Relationship and Jacobian Analysis of SPIDER4
RA-PKM

The Jacobian matrices for SPIDER4 are generated, taking into account only the parallel
structure mechanism since the wrist mechanism’s velocities are the same for the Cartesian
and joint space. The Jacobian matrices allow us to map the actuated joints’ velocities based
on the nacelle’s velocities. Having in mind that ||oCi−o Bi||2 = BC2

ix +BC2
iy +BC2

iz equation
(3.9) can be rewrite as

x2
n − 2Lx cosαi cos qi+L2 cos2 αi cos2 qi − 2aL cosαi cos qi + a2+
y2
n − 2Ly sinαi cos qi+L2 sin2 αi cos2 qi − 2bL sinαi cos qi + b2+

z2
n+2Lz sin qi + L2 sin2 qi = l

(3.20)

where a = Rp cosαi − Rb cosαi and b = Rp sinαi − Rb sinαi. The derivative of (3.20) with
respect to time yields the general equation of velocities’ relationship expressed in this form:

((Rp −Rb) cosαi + x− L cosαi cos qi)ẋ+ ((Rp −Rb) sinαi + y − L sinαi cos qi)ẏ+
(z + L sin qi)ż = −L((x cosαi + y sinαi +Rp −Rb) sin qi + z cos qi)q̇i ∀i = 1, ..., 4

(3.21)

The terms of the previous expression are regrouped with respect to the velocities in Cartesian
space and the velocities in joint space in order to obtain the Jacobian matrices Jx ∈ R4×3,
and Jq ∈ R4×4. These matrices are represented as:

Jx =


R cosα1 + xn − L cosα1 cos q1 R sinα1 + yn − L sinα1 cos q1 zn + L sin q1
R cosα2 + xn − L cosα2 cos q2 R sinα2 + yn − L sinα2 cos q2 zn + L sin q2
R cosα3 + xn − L cosα3 cos q3 R sinα3 + yn − L sinα3 cos q3 zn + L sin q3
R cosα4 + xn − L cosα4 cos q3 R sinα4 + yn − L sinα4 cos q4 zn + L sin q4

 (3.22)

Jq =


Jq11 0 0 0

0 Jq22 0 0
0 0 Jq33 0
0 0 0 Jq44

 (3.23)

Where
Jq11 = −L((xn cosα1 + yn sinα1 +R) sin q1 + zn cos q1)
Jq22 = −L((xn cosα2 + yn sinα2 +R) sin q2 + zn cos q2)
Jq33 = −L((xn cosα3 + yn sinα3 +R) sin q3 + zn cos q3)
Jq44 = −L((xn cosα4 + yn sinα4 +R) sin q4 + zn cos q4)

Therefore the general Jacobian matrix of a PKM may be written as:

J = J−1
q Jx ∈ R4×3 (3.24)

The joint velocities of the SPIDER4 RA-PKM q̇ ∈ R4×1 can be computed from the Cartesian
velocities of the nacelle Ṅ ∈ R3×1 trough the general Jacobian matrix J ∈ R4×3 in this way

q̇ = JoṄN (3.25)
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However, to find the Cartesian velocities of the nacelle in function of the joint velocities it so
necessary to compute the pseudoinverse Jacobian matrix H since J is a non-square matrix.
The pseudoinverse Jacobian matrix is defined as

H = (JTJ)−1JT ∈ R3×4 (3.26)

Thus, the Cartesian velocities of the parallel structure of SPIDER4 are computed through
the following expression:

oṄN = Hq̇ (3.27)

3.2.5 Inverse Dynamic Model of the delta-like positioning mecha-
nism of SPIDER4

The IDM of the SPIDER4 delta-like positioning device is obtained using the modeling simpli-
fications described in Chapter 2. The methodology presented in [Nabat, 2007] summarizes
the dynamic model for a PKM with delta-like architecture in the following form:

Γ(t) = Γact + Γna (3.28)

Where Γact ∈ Rn are the forces/torque contributions of the actuators and the rear-arms plus a
half mass of the forearms, whereas that Γna ∈ Rn represents the forces/torque contribution of
the nacelle plus the other half masses of the forearms. The IDM for the parallel structure of
SPIDER4 has notable differences compared to the Delta robot concerning to the gravity effect
over the kinematic chains since the kinematic chains of SPIDER4 are oriented horizontally as
long as those of Delta are oriented vertically. Figure 3.6 illustrates the modeling simplifications
applied to SPIDER. Let us start with the computation of Γna. Considering that the nacelle
performing only translation movements, it would be possible to avoid the calculation of
moments over it. Therefore, we can describe the nacelle dynamics by NE formulation as
follows:

Mt(oN̈N −G) = 0 (3.29)
In which, oN̈N ∈ R3×1 denotes the Cartesian acceleration on the nacelle, and G ∈ R3×1 is the
gravity acceleration vector denoted by G = [0 g 0]T with g = 9.81 m/s2. Mt is the total
mass matrix of the nacelle and the elements that are over it. This matrix is constituted as
Mt = diag{[mt mt mt]} R3×3, whose elements are given by:

mt = mna +mnamotors + 4mfa

2 (3.30)

Where mna is the nacelle mass, mfa is the forearm mass composed by the two parallelogram
bars mass, mnamotors is the mass of the three motors located at the nacelle and their coupling
parts. The motors located at the nacelle include: the motor generating the movement around
φ, the motor producing the movement over ψ, and the spindle motor. It is worth to note
that gravity acceleration is along the y-axis instead of z-axis due to the orientation of the
parallel structure of the robot. Therefore, the gravitational force acting on the nacelle can be
expressed as follows:

Gna = −MtG (3.31)
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Figure 3.6: Illustration of dynamic model simplifications applied to SPIDER4 RA-PKM

The inertial forces acting on the nacelle owing to the Cartesian acceleration oN̈N ∈ R3×1 are
expressed by:

Fna = Mo
tN̈N (3.32)

The contributions of Gna and Fna in joint space can be calculated using the pseudoinverse
Jacobian matrix H(q,o NN ) ∈ R3×4. These contributions are expressed through the following
relationship:

ΓGna = −HTMtG (3.33)
ΓFna = HTMo

tN̈N (3.34)
Therefore, Γna is given as follows:

Γna = ΓGna + ΓFna (3.35)

Having the dynamic equations for the nacelle, the next step consists to identify the dynamics
of the acting mechanism which is formed by the set of actuators, rear-arms, and forearms.
Similarly, as the nacelle, it should compute the torques produced by joint acceleration and
gravity acceleration. The torques produced by joint acceleration on the kinematic chains
ΓFra ∈ R4×1 are expressed in this way.

ΓFra = Itq̈ (3.36)

where It ∈ R4×4 is a diagonal matrix whose elements are formed by:

It = Iact + Ira + L2
imfa

2 (3.37)
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where Iact, Ira represents the actuators inertia and the rear-arms inertia, respectively. The
term L2

imfa

2 corresponds to the inertial contribution of the forearms using the second modeling
simplification where, L is the rear-arm’s length. In order to obtain the torques produced
by the gravity acceleration acting on the kinematic chains, we have to take into account
the orientation of the manipulator since the gravity force affects differently each one of the
kinematic chains. The gravity effect over the limbs of SPIDER4 is directly related to its
inclination around z-axis with a fixed angular orientation αi as is appreciated in Figure
3.4. We may define the vector of torques produced by the gravitational forces acting on the
kinematic chains set in this form:

ΓGra = −Mfrag cos(q) (3.38)

Where cos(q) =
[
cos(q1) cos(q2) cos(q3) cos(q4)

]T
the matrix Mfra ∈ R4×4 is composed

as follows:

Mfra =


mfra sin(α1) 0 0 0

0 mfra sin(α2) 0 0
0 0 mfra sin(α3) 0
0 0 0 mfra sin(α4)

 (3.39)

In which, mfra = mraLc + mfaL

2 , Lc is the distance to the center of mass of each rear-arm. In
this form Γact is established as:

Γact = ΓFra + ΓGra (3.40)
Substituting (3.38) and (3.35) into (3.28), the following expression is obtained:

Γ + ΓGna + ΓGra = ΓFna + ΓFra (3.41)

Equation (3.41) is a representation of the IDM combining Cartesian and joint space variables.
However, in order to express the dynamic model of the delta-like positioning device of
SPIDER4 only in the joint space, we have to use the following relationship, based on the
pseudoinverse Jacobian matrix and its derivative:

oN̈N = Hq̈ + Ḣq̇ (3.42)

By rearranging the terms, the simplified IDM of the delta-like positioning mechanism of
SPIDER4 is expressed terms of the redundant joint coordinates (q) as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Γ(t) (3.43)

with:
• M(q) = It + HTMtH

• C(q, q̇) = HTMtḢ

• G(q) = −ΓGna − ΓGra

where M(q) ∈ R4×4 denotes the inertia matrix of the delta-like positioning device of SPIDER4,
C(q, q̇) ∈ R4×4 is the Coriolis/Centripetal forces matrix satisfying the skew-symmetry
property; G(q) ∈ R4×1 is the vector of forces and torques due to gravity being continuous
and bounded.
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Figure 3.7: Details of the SPIDER4 wrist

3.2.6 Inverse Dynamic Model of the Wrist

In the previous subsection, a simplified IDM for the delta-like positioning device of SPIDER4
was derived. Notwithstanding, to derive the IDM of the whole manipulator, it is essential to
obtain the IDM of the wrist. The wrist is a serial mechanism formed by two links actuated by
two rotational joints. The IDM of this part of the robot is computed using Euler-Lagrange
formulation. Thus, we need first to obtain the forward kinematic model of the wrist, which is
obtained considering the equation (3.3). Figure 3.7 illustrates the dynamic and kinematic
parameters involved in this analysis. The forward kinematic model of the wrist is expressed
in the nacelle reference frame N − xn, yn, zn as follows:

NWW =

xwyw
zw

 =

 −Soffset cos(φ) sin(ψ)
−Soffset sin(φ) sin(ψ)
−Soffset cos(ψ) + Aoffset

 (3.44)

The Euler-Lagrange formulation needs the calculation of the kinetic and potential energy of
the wrist. Developing the derivative of (3.44) the kinetic energy of the wrist can be expressed
as:

Kw = 1
2m

N
s ẆTN

W ẆW + 1
2Imφφ̇ (3.45)

where ms is the mass of the spindle motor and its coupling parts and Imφ is the rotational
inertia produced by the mass of the second motor on the nacelle and its coupling parts. The
Potential energy of the wrist can be expressed in the following form, considering that the
gravity acceleration is over y-axis.

Uw = −msgSoffset sin(φ) sin(ψ) (3.46)
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Hence, the Lagrangian function is established in function of ξ =
[
φ ψ

]T
, as follows [Siciliano

et al., 2010]:
L(ξ, ξ̇) = Kw(ξ, ξ̇)−Uw(ξ) (3.47)

The Lagrangian function (3.47) is evaluated in the Euler-Lagrange dynamic equation, in order
to acquire the IDM of the wrist.

d

dt

[
∂L(ξ, ξ̇)
∂ξ̇

]
−
[
∂L(ξ, ξ̇)
∂ξ

]
= Γw (3.48)

Being Γw ∈ R2×1 the torque vector of the wrist actuators. Developing the equation (3.48);
the IDM of the wrist is formulated in the function of its joint coordinates as follows:

Mw(ξ)ξ̈ + Cw(ξ, ξ̇)ξ̇ + Gw(ξ) = Γw (3.49)

being

Mw(ξ) =
[
msS

2
offset sinψ + Imφ 0

0 msS
2
offset

]
Cw(ξ, ξ̇) =

[
0.5msSoffset cosψφ̇ 0

0 0

]

Gw(ξ) =
[
−msgSoffset sinψ cosφ
−msgSoffset sinφ cosψ

]

where Mw(ξ) ∈ R2×2 denotes the inertia matrix of the wrist, Cw(ξ, ξ̇) ∈ R2×2 is the Corio-
lis/Centripetal forces of the wrist matrix. and Gw(ξ) ∈ R2×1 is the vector of gravity forces
for the wrist.

3.2.7 Inverse Dynamic Model of SPIDER4 RA-PKM

The whole inverse dynamic model of SPIDER4 can be expressed in function of the generalized
coordinates, as a result of the fusion of the IDM of the positioning delta-like device (3.43),
and the inverse dynamic model of the wrist (3.49), yielding:

M(Q)Q̈ + C(Q, Q̇)Q̇ + G(Q) = ΓT (t) (3.50)

being:

M(Q) =
[
M(q)[4×4] 0[2×4]

0[2×4] Mw(ξ)[2×2]

]
C(Q, Q̇) =

[
C(q, q̇)[4×4] 0[2×4]

0[2×4] Cw(ξ, ξ̇)[2×2]

]

G(Q) =
[

G(q)[4×1]
Gw(ξ)[2×1]

]
ΓT =

[
Γ[4×1]
Γw[2×1]

]
Q =

[
q[4×1]
ξ[2×1]

]

where M(Q) ∈ R6×6 denotes the inertia matrix of SPIDER4, C(Q, Q̇) ∈ R6×6 is the Corio-
lis/Centripetal forces matrix of SPIDER4, G(Q) ∈ R6×1 is the vector of gravity forces and,
ΓT ∈ R6×1 is the torque vector of the whole actuators of SPIDER4.
The dynamic parameters SPIDER4 as the masses of the rear-arms, forearms, the nacelle,
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Table 3.2: Summary of the dynamic parameters of SPIDER4
Parameter Description Value

mna Nacelle mass 22.76 Kg
mnamotors Mass of the three motors located on the Nacelle 19.5 Kg
mra Rear-arm mass 17.6 Kg
mfa Forearm mass 4.64 Kg
Iarm Rear-arm inertia 1.69 Kgm2

Iact Inertia of one of the principal actuators 0.00223 Kgm2

ms Mass of the spindle motor 3.2 Kg
mψ Motor mass that regulates movement in ψ 5.1 Kg
mφ Motor mass that regulates movement in φ 11.2 Kg

coupling parts, and rear-arms inertia were calculated through material assignation function-
ality of SolidWorks. The other dynamic parameters as the inertia of the motors and their
masses were obtained from the datasheets of the manufacturers of the actuators. The values
of dynamical parameters are given in Table (3.2).
NOTE: The IDM introduced in (3.43) is taken for subsequent control development in Chapter
4 instead of (3.50) owing to the delta-like, and the wrist mechanisms are controlled indepen-
dently. The robot’s software allows us to modify only the control scheme for the delta-like
mechanism; however, for the wrist, that is not possible. In the next section, the control
scheme for the delta-like positioning will be presented.

3.3 Non-Redundant PKM (Delta)

3.3.1 Description and Modeling of Delta robot

Delta PKM is a 3-DOF PKM designed to perform high-speed P&P operations. It has been
developed by Reymond Clavel [Clavel, 1991]. The Delta PKM consists of three kinematic chains
formed by one rear-arm and one forearm linked together by means passive spherical joints. The
forearms of the Delta robot are constituted by two parallel bars whose purpose is to restrict the
traveling-plate orientation. The kinematic chains are responsible for transferring the movement
generated by the three located on the fixed base to the traveling-plate. Figure 3.8 presents a
Delta PKM prototype, which is in the process of development at the Polytechnic University of
Tulancingo. The Figure also shows the kinematic configuration of this manipulator where the
gray boxes represent the active rotational joints, and the white boxes represent the passive
spherical joints.
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(a) Overview of a Delta PKM
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(b) Delta PKM kinematic chains diagram.

Figure 3.8: The Delta PKM and its kinematic configuration

3.3.2 Inverse Kinematic Model of Delta PKM

The IKM of a Delta PKM consists to find the corresponding joint positions of the three
actuated joints q =

[
q1 q2 q3

]T
∈ R3×1 given the position of the traveling-plate expressed

in the fixed reference frame O − xo, yo, zo as X =
[
x y z

]T
∈ R3×1. The IKM of the Delta

PKM can be found by means the following equation [Pierrot et al., 1991].

||oBo
iCi||2 = l2i (3.51)

This equation is called the closed-loop equation and it involves all geometric variables of the
Delta PKM. The IKM of a Delta PKM consists to find the corresponding joint positions of
the three actuated joints q =

[
q1 q2 q3

]T
∈ R3×1 given the position of the traveling-plate

expressed in the fixed reference frame O−xo, yo, zo as X =
[
x y z

]T
∈ R3×1. Making use of

Figure 3.9 the following equations are established in order to obtain the IKM of Delta PKM.
oAi = Rb

[
cos(αi) sin(αi) 0

]T
(3.52)

where Ai, ∀i = 1...3 represents the location of the thee actuated joints expressed in the fixed
reference frame. Rb is the fixed-base radius, the actuated joints are placed with the following
angles α =

[
3π
2

π
6

5π
6

]T
.

The points Bi and Ci whose coordinates are expressed in the fixed reference frame O−xo, yo, zo
are defined as follows:

oBi = oAi + L
[
cos(αi) cos(qi) sin(αi) cos(qi) − sin(qi)

]T
(3.53)

oCi =
[
Rp cos(αi) + x Rp sin(αi) + y z

]T
(3.54)

Being L, the rear-arm length, and Rp is the traveling-plate radius. For further analysis, an
auxiliary frame located at oAi-xi, yi, zi is defined, where the auxiliary vectors ixi and iyi are
defined as:

ixi =
[
cos(αi) sin(αi) 0

]T
(3.55)
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Figure 3.9: Kinematics illustration of the Delta PKM
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Table 3.3: Summary of the kinematic parameters of Delta PKM
Parameter Description Value

L Rear-arm length 0.3 m
l Forearm length 0.624 m
Rb Fixed base radius 0.1267 m
Rp Traveling plate radius 0.0497 m

iyi =
[
− sin(αi) cos(αi) 0

]T
(3.56)

Having defined all the equations that involve the closed-loop equation, expression (3.51) is
re-write in the following form to obtain the values of qi.

Di sin(qi) + Ei cos(qi) + Fi = 0 ∀i = 1, 2, 3 (3.57)

where Di = 2Li(oAo
iCi · zo), Ei = 2Li(oAo

iCi ·i xi), and Fi = l2i − L2
i − ||oAo

iCi||2. Solving
(3.57) the values of qi can be computed by means of the following expression:

qi = arctan
(
−Di ±

√
∆i

Fi − Ei

)
(3.58)

Being ∆i = D2
i + E2

i − F 2
i . The mechanism of the Delta PKM of the Polytechnic University

of Tulancingo, including all the coupling parts, was designed and assembled in SolidWorks
Software. The kinematic parameters were obtained from the CAD model lengths of the limbs,
the radius of the fixed base, and the traveling plate. Thereby, the kinematic parameters of
Delta are known with precision. Such parameters are presented in Table 3.3.

3.3.3 Forward Kinematic Model of Delta PKM

Similar to SPIDER4 RA PKM, to find the traveling plate position, it is necessary to establish
a set of nonlinear algebraic equations describing the intersection of virtual spheres. Figure
3.10 describes graphically the FKM solution applied to Delta PKM. Emphasizing the 3-
DOF Delta PKM, its FKM consists of finding the corresponding traveling plate position
X =

[
x y z

]T
∈ R3×1 expressed in the fixed reference frame O − xo, yo, zo given the joint

positions of the three actuated joints q =
[
q1 q2 q3

]T
∈ R3×1. Figure3.10 illustrates the

intersection algorithm of three virtual spheres to obtain the FKM of Delta Robot. A crucial
part of applying this method is to establish the virtual sphere centers. To do that, the points
Bi must be a move to the center of the traveling plate X, which is unknown. Considering the
kinematic relationships of a PKM with delta-like architecture, the virtual spheres’ centers are
established by following kinematic expression.

oB′i =o Bi −X Xi (3.59)

where X is defined in the traveling plate reference frame X − xx, yx, zx as:
XXi =

[
Rp cos(αi) Rp sin(αi) 0

]T
(3.60)
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Figure 3.10: Illustration of the three virtual spheres intersection used to find oX position

Thus, the sphere equation may defined as follows:

(x− xi)2 + (y − yi)2 + (z − zi)2 = l2i (3.61)

where xi, yi, and zi represents the center coordinates of the sphere. Expression (3.59) can be
expanded by obtaining the following equation:

oB′i =

xiyi
zi

 =

(L cos(qi) +Rb −Rp) cos(αi)
(L cos(qi) +Rb −Rp) sin(αi)

−L sin(qi)

 (3.62)

For the 3-DOF Delta PKM (3.61) is extended to obtain the following equations’ system:

x2 + y2 + z2 − 2x1x− 2y1y − 2z1z + w1 = l2

x2 + y2 + z2 − 2x2x− 2y2y − 2z2z + w2 = l2

x2 + y2 + z2 − 2x3x− 2y3y − 2z3z + w3 = l2
(3.63)

In which, wi = x2
i + y2

i + z2
i ∀i = 1, 2, 3. The solution of the previous equations’ can be

expressed as follows:
x = d2z + e2 (3.64)

y = d1z + e1 (3.65)

z = −b−
√
b2 − 4ac

2a (3.66)
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Where the auxiliary constants needed in (3.64)-(3.66) are defined as:

a1 = y1 − y2

x2 − x1
b1 = z1 − z2

x2 − x1
c1 = w2 − w1

2(x2 − x1) d1 = b2 − b1

a1 − a2
e1 = c2 − c1

a1 − a2

a2 = y1 − y3

x3 − x1
b2 = z1 − z3

x3 − x1
c2 = w3 − w1

2(x3 − x1) d2 = a1d1 + b1 e2 = a1e1 + c1

a = d2
1 + d2

2 + 1
b = 2[(e1 − y1)d1 + (e2 − x1)d2 − z1]
c = e2

1 + e2
2 − 2(e1y1 + e2x1) + w1 − l2

3.3.4 Velocity Relationship and Jacobian Analysis of Delta PKM

The Jacobian matrices allow to map the velocities of the actuated joints based-on the velocities
of the traveling plate or the nacelle. Having in mind that ||oBo

iCi||2 = BC2
ix +BC2

iy +BC2
iz

equation (3.51) can be rewrite as

x2 − 2Lx cosαi cos qi+L2 cos2 αi cos2 qi − 2aL cosαi cos qi + a2+
y2 − 2Ly sinαi cos qi+L2 sin2 αi cos2 qi − 2bL sinαi cos qi + b2+

z2+2Lz sin qi + L2 sin2 qi = l

(3.67)

where a = Rp cosαi − Rb cosαi and b = Rp sinαi − Rb sinαi. The derivative of (3.67) with
respect to time yields the general equation of velocities’ relationship expressed in this form:

((Rp −Rb) cosαi + x− L cosαi cos qi)ẋ+ ((Rp −Rb) sinαi + y − L sinαi cos qi)ẏ+
(z + L sin qi)ż = −L((x cosαi + y sinαi +Rp −Rb) sin qi + z cos qi)q̇i ∀i = 1, ..., n

(3.68)

The terms of the previous expression are regrouped with respect to the velocities in Cartesian
space and the velocities in joint space in order to obtain the Jacobian matrices Jx ∈ R3×3, and
Jq ∈ R3×3 . Therefore the general Jacobian matrix of a robot manipulator may be written as:

J = J−1
q Jx ∈ R3×3 (3.69)

Considering (3.68) the Jacobian matrices for the Delta PKM are expressed as follows:

Jx =

R cosα1 + x− L cosα1 cos q1 R sinα1 + y − L sinα1 cos q1 z + L sin q1
R cosα2 + x− L cosα2 cos q2 R sinα2 + y − L sinα2 cos q2 z + L sin q2
R cosα3 + x− L cosα3 cos q3 R sinα3 + y − L sinα3 cos q3 z + L sin q3

 (3.70)

Jq =

Jq11 0 0
0 Jq22 0
0 0 Jq33

 (3.71)
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where R = Rp −Rb and

Jq11 = −L((x cosα1 + y sinα1 +R) sin q1 + z cos q1)
Jq22 = −L((x cosα2 + y sinα2 +R) sin q2 + z cos q2)
Jq33 = −L((x cosα3 + y sinα3 +R) sin q3 + z cos q3)

The joint velocities of the Delta PKM q̇ ∈ R3×1 may be computed from the Cartesian velocities
Ẋ ∈ R3×1 trough the general Jacobian matrix J ∈ R3×3 in this way

q̇ = JẊ (3.72)

To obtain the Cartesian velocities in function of the joint velocities (3.72) is reformulated as:

Ẋ = Jmq̇ (3.73)

being Jm the inverse matrix of J

3.3.5 Inverse Dynamic Model of Delta PKM

The simplified IDM of the 3-DOF Delta PKM is obtained considering the hypothesis simplifi-
cations described in Chapter 2, where all kinds of friction are neglected, and the forearms’
mass is distributed equivalently between the rear-arms and the traveling plate. Therefore,
equation (2.13) can be re-written as:

Γ(t) = Γra(t) + Γfa(t) + Γtp(t) (3.74)

where Γra(t) represents the vector of torques produced by the rear-arms, Γfa(t) are the toques
generated by the forearms, and Γtp(t) are the torques produced by the traveling plate or
nacelle. The rear-arms torques are computed through the following equation:

Γra(t) = Iactq̈ + Iraq̈ −MragLccos(q) (3.75)

where Iact = diag([Iact]) ∈ Rm×m, represents the matrix inertia of the actuators and the
gear-head, Ira = diag([Ira]) ∈ R3×3 is the inertia matrix of the rear-arms’, cos(q) is a vector
of 3× 1, representing the cosine of each angle qi∀i = 1, ..., 3, Mra = diag([Mra]) ∈ R3×3 is the
mass matrix of the rear-arms’, and Lc is the distance from the rotational axis of the rear-arm
to its gravity center. The contributions of the inertia and torque (or effort) due to the spatial
parallelogram are given by means the following expression:

Γfa(t) = Ifaq̈ −MfagLcos(q) + JTmMnfa(Ẍ + G) (3.76)

Being Ira = diag([L2mfa

2 ]) ∈ R3×3, and Mfa = diag([mfa

2 ]) ∈ R3×3, where mfa is the mass of
a forearm considering the two parallel bars. Mnfa = diag([nmfa

2 ]) is a matrix of 3× 3, as long
as Jm is the pseudo inverse Jacobian matrix with a dimension of 3× 3, and G =

[
0 0 g

]
.

The torque contributions given by the traveling are denoted by the following expression

Γtp(t) = JTmMtp(Ẍ−G) (3.77)
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Table 3.4: Summary of the dynamic parameters of Delta PKM
Parameter Description Value

mtp Traveling Plate Mass 0.19 Kg
mra Rear-arm Mass 0.29 Kg
mfa Forearm Mass 0.28 Kg
Ira Rear-arm Inertia 0.0213 Kgm2

Iact Motor Inertia 3.8×−6 Kgm2

Being Mtp = diag([mtp]) ∈ R3×3, where mtp is the mass of the traveling plate. Substituting
equations (3.75)-(3.77) into (3.74), we obtain the following expression for the Delta PKM
dynamic model.

Γ = (Iact + Ira + Ifa)q̈ − (MragLG + MfagL)cos(q) + JTm(Mtp + Mnfa)(Ẍ−G) (3.78)

To express entirely the IDM in the joint variables we should derive (3.73), obtaining:

Ẍ = Jmq̈ + J̇mq̇ (3.79)

Equation (3.79) is substituted into (3.78), the resulted expression is reorganize in the following
form:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Γ (3.80)
The inertia matrix M(q) ∈ R3×3 is expressed as:

M(q) = It + JTmMtJm (3.81)

where It = Iact + Ira + Ifa ∈ R3×3 and Mt = Mtp + Mnfa ∈ R3×3. The matrix of Coriolis and
centrifugal forces C(q, q̇) ∈ R3×3 is denoted as:

C(q, q̇) = JTmMtJ̇m (3.82)

Finally,the gravity forces vector G(q) ∈ R3×1 is conformed by:

G(q) = −JTmMtG− (MragLc + MfagL)cos(q) (3.83)

The dynamic parameters of Delta PKM as the masses of the rear-arms, forearms, the traveling
plate, coupling parts, and rear-arms inertia were calculated through the material assignation
functionality of SolidWorks. The other dynamic parameters as the inertia of the motors and
their masses were obtained from the datasheets of the manufacturers of the actuators. The
values of such dynamical parameters are provided in Table 3.4.

3.4 Conclusion
In this chapter, two PKMs were introduced, the new solution for machining called SPIDER4,
which was built between LIRMM and Tecnalia, and a Delta PKM designed and built at the
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Polytechnic University of Tulancingo intended to be used in P&P tasks. The kinematic and
dynamic models of both platforms were developed. For the SPIDER4 positioning device
and the Delta PKM, the closed-loop method was used to obtain the IKM. Besides, it was
employed transformations matrices to compute the IKM of the wrist of SPIDER4. The
IKM of the delta-like positioning devices and the wrist were coupled to get the IKM of the
whole SPIDER4. The FKM for both PKMs has been calculated through a virtual spheres
intersection algorithm, which provides the nacelle and traveling-plate position when the robot
motors’ joint position is known. The relationship of velocities was achieved thanks to the
Jacobian matrices. These matrices were derived from the closed-loop equation established in
the kinematic analysis to obtaining the IKMs. Two significant simplifications were considered
in the IDM development for the delta-like positioning device of SPIDER4 and the Delta PKM.
The first one is the forearms’ inertia is despite, and their mass is divided into two parts. One
part is added to the end of the rear-arm, and the other part is added to the traveling plate or
nacelle. The second simplification neglects the frictional forces in the joints of the PKMs since
it is complicated to obtain an accurate friction model in nonlinear systems as these kinds
of PKMs. Moreover, in the case of SPIDER4, it was calculated the IDM of the wrist using
Euler-Lagrange formulation. Both IDMs of the wrist and the positioning part were joined
to get the whole IDM of SPIDER4. Nevertheless, we will consider the IDM of the delta-like
device for control purposes since we can not modify the control law of the wrist mechanism.
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Proposed Control Solutions

In this chapter, the proposed control solutions for SPIDER4 RA-PKM and the Delta PKM
developed at the Polytechnic University of Tulancingo will be described in detail. For
SPIDER4, the control solutions are a RISE controller with nominal feedforward and a RISE
feedforward controller with adaptive feedback gains. Finally, for Delta, we propose a RISE
control with an adaptive feedforward compensation term based-on B-Spline neural networks.
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4.1 Introduction
Control of PKMs is an important subject that is still in development because, in each decade,
new architectures of these types of manipulators emerge to bee applied in one or more specific
tasks. As detailed in Chapter 1, parallel robots, due to their kinematic construction, have
desirable features such as improved stiffness, equitable distribution of the payload in its
set of linkages, high repeatability, potential accuracy, and, in the case of RA-PKMs, the
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singularity avoidance, and improved dynamics. Notwithstanding, the control of these devices
represent significant challenges due to the presence of different types of uncertainties, the
highly nonlinear dynamics, and the issue of internal forces generation on RA-PKMs. To
outcome these issues, advanced nonlinear control techniques must be implemented to obtain
the highest potential that PKMs can offer. Aware of the importance of implementing advanced
control schemes for Parallel robots, in this Chapter, we will describe in detail three proposed
control solutions for PKMs. The first two control solutions will be applied on SPIDER4,
as long as the third one will be implemented on Delta PKM. The proposed controllers aim
to keep the joint tracking error as minimum possible under the environment in which the
robot is intended to operate. The fist control solution aims to validate the proposed IDM of
SPIDER4 experimentally, the second one is conceived to deal with the problem machining
in soft materials, and the third one is proposed to keep precision on P&P tasks. Although
these control proposals were thought to satisfy machining and P&P tasks, it is also possible
to implement these controllers in any other type of robot manipulator. Before describing the
proposed control schemes in detail, let us present a background of control techniques used as
the basis of our proposals.

4.2 Background on RISE-Based Controllers

RISE control is a kind of continuous feedback controller that may ensure semi-global asymptotic
stability even in the presence of a large class of uncertainties and nonlinearities [Xian et al.,
2004]. All real nonlinear systems are well known for the presence of non-modeled phenomena
as friction dynamics, or the inaccurate knowledge of its dynamic parameters. Indeed, in
robotic manipulators, some of such dynamic parameters are time-varying, such as the payload.
Therefore, based on limited assumptions of the system to be controlled as the equation system
structure, the controller can partially compensate for such nonlinearities and uncertainties
with an appropriate gain selection. For the mentioned advantages, RISE control has already
been tested on PKMs. In [Bennehar et al., 2018], the first implementation of the original RISE
control was reported on a PKM, a 3-DOF Delta robot. Moreover, in the mentioned work, an
adaptive feedforward-based term was added to original RISE control to enhance the overall
performance of the robot. A similar RISE control with adaptive feedforward was implemented
on a 3-DOF RA-PKM called Dual-V [Bennehar et al., 2014b], the main difference between
this control scheme and the previous one lies in the adaptation law. Another interesting
extension of RISE control was presented in [Saied et al., 2019a], where some of the constant
feedback gains were replaced by nonlinear time-varying ones endowing the controller with
better robustness again external perturbations.

4.2.1 Original RISE Control

Lets us consider the following nth order MIMO nonlinear system

M(X)Xn + F(X) = U(t) (4.1)
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In which, X(t) = [x(t) ẋ(t) , ..., xn−1(t)]T ∈ Rn represents the system states, U(t) ∈ Rn

denotes the control input, and M(X) ∈ Rn×n, F(X) ∈ Rn are uncertain nonlinear functions.
Based on the system states one can define the output tracking error as

e1 = xd − x (4.2)

Where xd ∈ Rn represents the desired trajectory. The control objective is to guarantee
e1(t)→ 0 as long as t→∞

Property 4.2.1 The nonlinear functions M(.), F(.) are second-order differentiable and
bounded.

Property 4.2.2 The uncertain nonlinear function M(.) ∈ Rn×n is a symmetric positive-
definite matrix satisfying the following inequality ∀ζ ∈ Rn :

m||ζ||2 ≤ ζTM(.) ≤ m(x)||ζ||2 (4.3)

Where m is a positive constant, m(x) is positive non-decreasing function, and ||.|| represents
the standard Euclidean norm.

Property 4.2.3 The desired trajectory xd is continuously differentiable with respect to time
until the (n+ 2) derivative.

Control Law

Lets us consider the following auxiliary error signals before to introduce the control law:

e2(t) = ė1(t) + e1(t)
e3(t) = ė2(t) + e2(t) + e1(t)
e4(t) = ė3(t) + e3(t) + e2(t)

...

en(t) = ėn−1(t) + en−1(t) + en−2(t)

(4.4)

According to the stability analysis presented in [Xian et al., 2004], the following control law is
established in order to reach the control objective:

U(t) = (Ks + I)en(t)− (Ks + I)en(0) +
∫ t

0
[(Ks + I)Λen(τ) + βsgn(en(τ))]dτ (4.5)

Where Ks, Λ, β ∈ Rn×n are positive-definite control gain matrices, and I ∈ Rn×n represents
the identity matrix.
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Application of Standard RISE control to PKMs

For a PKM with m-DOF and n actuators, equation (4.1) may expressed as:

M(q)q̈ + F(q, q̇) = Γ(t) (4.6)

Where F(q, q̇) = C(q, q̇)q̇ + G(q) + f(q, q̇) + Γd, being f(q, q̇) ∈ Rn the vector containing
the friction effects, and Γd ∈ Rn a bounded vector of disturbances. The joint tracking error
e1(t) ∈ Rn is defined as:

e1(t) = qd(t)− q(t) (4.7)

The following filtered tracking errors are defined to assist in the further stability analysis [Patre
et al., 2006]:

e2(t) = ė1(t) + Λ1e1(t) (4.8)

r(t) = ė2(t) + Λ2e2(t) (4.9)

Where Λ1 and Λ2 ∈ Rn×n, are two positive-definite diagonal gain matrices. The open-loop
tracking error system can be obtained multiplying (4.9) by M(q) yielding the following
expression:

M(q)r = M(q)(ė2 + Λ2e2) (4.10)

Making use of (4.9) and (4.8), the closed-loop tracking error system is expressed as:

M(q)r = F(q, q̇) + M(q)(q̈d + Λ1ė1 + Λ2e2)− ΓRISE(t) (4.11)

In which, ΓRISE(t) = Γ(t). Equation (4.5) can be re-formulated to be applied in robotic
systems as follows:

ΓRISE(t) = (Ks + I)e2(t)− (Ks + I)e2(0) +
∫ t

0
[(Ks + I)Λ2e2(τ) + βsgn(e2(τ))]dτ (4.12)

To facilitate the stability analysis of Standard RISE control, one can develop the time
derivative of (4.11) obtaining the following equation:

M(q)ṙ = −Ṁ(q)(r− q̈d)+Ḟ(q, q̇) + M(q)˙̇q̇d + Λ1(M(q)ë1 + Ṁ(q)ė1)
Λ2(M(q)ė2 + Ṁ(q)e2)− Γ̇RISE

(4.13)

The previous equation is re-written in the following form as is stated in [Xian et al., 2004]

M(q)ṙ = −1
2Ṁ(q)r + N(e1, e2, r, t)− e2(t)− Γ̇RISE(t) (4.14)

Where N(e1, e2, r, t) ∈ Rn is a nonlinear auxiliary function containing the uncertain terms
related to the robot’s dynamic model whose elements are defined as follows:

N(e1, e2, r, t) =Ṁ(q)q̈d + M(q)˙̇q̇d + Ḟ(q, q̇) + e2(t)− 1
2Ṁ(q)r

Λ1(M(q)ë1 + Ṁ(q)ė1) + Λ2(M(q)ė2 + Ṁ(q)e2)
(4.15)
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The time derivative of Standard RISE control is given as:

Γ̇RISE = (Ks + I)r + βsgn(e2) (4.16)

Let us define the following auxiliary function Nd(qd, q̇d, q̈d, t)Rn used to facilitate the subse-
quent stability analysis of the controller.

Nd(qd, q̇d, q̈d, t) = M(qd)˙̇q̇d + Ṁ(qd)q̈d + C(qd, q̇d)q̈d + Ċ(qd, q̇d)q̇d + Ġ(qd) + ḟ(qd, q̇d)
(4.17)

Adding and subtracting Nd(qd, q̇d, q̈d, t) to the right-hand side of the closed-loop error system
equation (4.14), the following mathematical expression is obtained:

M(q)ṙ = −1
2Ṁ(q)r + Nd + Ñ− e2(t)− Γ̇RISE(t) (4.18)

Where
Ñ(e1, e2, r, t) = N(e1, e2, r, t)−Nd(qd, q̇d, q̈d, t) (4.19)

The vector Ñ can be upper bounded as follows using the Mean Value Theorem:

||Ñ|| ≤ ρ(||z||)||z|| (4.20)

In which, || · || represents the Euclidean norm, and z(t) ∈ R3n is an error vector defined as:

z(t) = [e1 e2 r]T (4.21)

The stability analysis for this control scheme was proved in [Xian et al., 2004], achieving the
control objective presented at the beginning of this section. The mentioned work will be
considered for the analysis of the proposed control solutions detailed in further sections.

4.3 Background on Artificial Neural Networks

Artificial Neural Networks (ANN) are computational networks that intend to imitate the
behavior of Biological Neural Networks (BNN) [Graupe, 2013]. The human brain is composed
of an extensive network of neurons. A neuron is a specialized biological cell that receives
and transmits information to other neurons with the help of some electrical and chemical
change [Sharma et al., 2012]. The task that performs an individual neuron is simple; however,
when they constitute a big network, they can perform quickly and precisely complex tasks
such as image recognition and speech [Zou et al., 2008]. An individual neuron consist of the
cell body, also called soma, an axon, and dendrites. The information that the neuron receives
is processed in the nucleus, which is inside the soma; such information is collected from
neighboring neurons through the dendrites. The neuron sends signals at spikes of electrical
activity through a long thin stand known as an axon, and an axon splits these signals through
synapse and sends it to the other neurons [Sharma et al., 2012]. Figure 4.1 presents a sketch
of a biological neuron. Mostly ANNs have three indispensable parts: the nodes, network
topology, and the learning rule. Nodes are the equivalent to neurons on a BNN. They include



78 CHAPTER 4. PROPOSED CONTROL SOLUTIONS

Figure 4.1: Sketch of a biological neuron

the activation function, which processes the entering information on the node inputs. The
respective weights associate transmits the information to the input and output of the node.
The network topology determines how many nodes will be involved in the network, their
distribution, the kind of activation function, and how they will be connected between them.
The learning rule determines how the associate weights will be initialized and adjusted. ANNs
have been applied extensively in several robotics fields such as pattern recognition, learning,
signal processing, modeling identification, and control [Jiang et al., 2017]. Some advantages
of the use of ANNs are listed below [Jain et al., 1996]:

• Adaptability

• Learning ability

• Massive parallelism

• Distributed representation and computation

• Inherent contextual formation processing

• Fault tolerance

• Low energy consumption
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Figure 4.2: Standard artificial neuron model

4.3.1 ANNs general model

In many cases the processing nodes of any ANN have a response in the following form:

σi = f

(∑
k

wijxj + bi

)
(4.22)

Where σi represents the output of the ith, bi is a threshold, f(.) is the activation function
which depends of the output of other nodes or external inputs represented by xj, and the
involved weights wij. Figure 4.2 represents the model of an artificial neuron.

4.3.2 The activation function

Activation functions are mathematical equations playing a crucial part in each node since
they determine the ANN’s output. Furthermore, the accuracy, computation efficiency, and
the convergence speed of the ANN are strictly related to the activation function. Usually,
activation functions are nonlinear functions helping to normalize the output of each node to a
range between 1 and 0 or between -1 and 1. Activation functions must be computationally
efficient because, in an ANN, hundreds or thousands of nodes work together to achieve a
specific task. The most common used activation functions are: Unit step, sign, piecewise
linear, sigmoid, hyperbolic tangent, Gaussian, among others (see Figure 4.3).

4.3.3 ANNs architectures

The ANNs architectures can be according the flow information as follows:
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Figure 4.3: Common activation functions for ANNs

• Feedforward ANNs, in which the flow of information only goes forward

• Feedback ANNs, in which loops occur because of feedback connections.

Some examples of ANNs divided into these categories are: Single-layer perceptron, multilayer
perceptron, and Radial Basis Function (RBF) for feedforward ANNs, and Hopfield network,
competitive networks as feedback ANNs [Jain et al., 1996]. In addition to the classification
mentioned above, ANNs architectures can be divided into the following two categories. The
first one is the multi-layer ANN (with one or more hidden layers of nodes). This configuration
increases the computation complexity since the information travels bidirectionally between
the hidden layers of the neural network, besides they entail a considerable computational
cost requiring long training time [Deng et al., 2010]. The second one is the single-layer
ANN (with only one layer of nodes), for instance, the Associative Memory Neural Network
(AMNN). This kind of ANN requires less computational processes due to its single layer of
neurons. These kinds of ANNs assume the principle of local generalization, implying that
for a specific input, just a portion of the ANN will be involved; thus, the computational
effort is reduced. Moreover, their activation functions are linear respect to the adaptable
weights so, straightforward instantaneous learning rules can be used to update their adjusted
weights [dos Santos Coelho and Pessoa, 2009]. Some examples AMNNs are the Cerebellar
Model Articulation Controller (CMAC) and the BSNN.
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4.3.4 Application of ANNs to robotics control

There have been reported some recent advances in the field of robotics control using ANNs;
we can mention some examples of their application in multi-layer and single-layer ANNs.
In the branch of multi-layer-based ANNs, a nonlinear adaptive controller was proposed to
regulate the trajectory tracking of a Cable-driven robot in [Asl and Janabi-Sharifi, 2017];
the mentioned controller can compensate for parametric and non-parametric uncertainties of
the nonlinear robot dynamics; the weights are updated trough projection operators. On the
other hand, for control solutions based on single-layer ANNs, we can stand out the proposed
modification of a CMAC reported in [Razmi and Macnab, 2020], which was proposed to find
optimum weigh values to outstrip nonlinearities like gravity. This algorithm freezes a set
of adaptive weights in a feedforward-like component in the CMAC. When the feedforward
component has been established, the algorithm starts to learn another set of weights which
contribute to feedback-like terms in the CMAC and these weights get frozen when they no
longer reduce a cost-functional This control solution based in the CMAC ANN was validated
with numerical simulations to a two-link flexible-joint robot. Another example is the output
feedback controller with a feedforward term based on the RBF ANN reported in [Asl et al.,
2018], which was proposed to compensate for uncertainties in the dynamic model of a robotic
exoskeleton. This advanced control solution requires only position information for the RBF
inputs.
Considering the presented background of RISE control and the fundamental concepts of
ANNs, we can proceed to introduce the proposed control solutions for SPIDER4 RA-PKM
and Delta PKM.

4.4 Control Solution 1: A RISE Controller with Nom-
inal Feedforward

4.4.1 Motivation

Feedforward control is an open-loop scheme that compensates the system dynamics without
needing information about the system states as the tracking error. For such reason, it requires
precise knowledge about the dynamics of the system to be controlled. However, in reality, it is
practically impossible to have an accurate knowledge of the system parameters. Besides, the
abundance of uncertainties makes inappropriate the implementation of a feedforward control
alone because the tracking error will always be incremented owing to this control scheme does
not offer any corrective action. Thus, it is necessary to integrate a feedback term guaranteeing
that the tracking error goes to zero. In the literature, it has been demonstrated in several
works that the addition of a feedforward term to a feedback controller can significantly enhance
the overall performance over simple feedback control. So, we propose to combine the Standard
RISE control as a robust feedback control to a nominal feedforward term. The main objective
of this control solution is to demonstrate the effectiveness of the proposed IDM for SPIDER4
with its computed dynamic parameters. Considering the previous advantage mentioned about
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the addition of a feedforward term to a feedback controller, we can say that if the IDM of
SPIDER4 and its parameters are sufficiently well approximated to the real dynamics, we will
obtain better performance compared to RISE control alone. However, in the opposite case,
the resulting performance will be worse.

4.4.2 Proposed Control law

Considering the advantages presented by RISE control and taking into account the benefits
generated by the addition of model-based control terms to the control law, the following
controller is proposed:

Γ(t) = ΓRISE + ΓFW (4.23)

Where ΓRISE ∈ Rn is the same controller equation described in (4.12), and the nominal
feedforward term ΓFW ∈ Rn is defined as follows

ΓFW = M(qd)q̈d + C(qd, q̇d)q̇d + G(qd) (4.24)

Controller Design

Substituting the proposed control law (4.23) into the dynamics of a PKM (4.6) the following
closed-loop tracking error system is obtained

M(q)r = F(q, q̇) + M(q)(q̈d + Λ1ė1 + Λ2e2)− ΓRISE(t)− ΓFW (t) (4.25)

The first time-derivative of (4.25) results in the following expression:

M(q)ṙ = −Ṁ(q)(r− q̈d)+Ḟ(q, q̇) + M(q)˙̇q̇d + Λ1(M(q)ë1 + Ṁ(q)ė1)
Λ2(M(q)ė2 + Ṁ(q)e2)− Γ̇RISE − Γ̇FW

(4.26)

The previous equation is reformulated in the same way as was presented in subsection 4.2.1.

M(q)ṙ = −1
2Ṁ(q)r + N(e1, e2, r, t)− e2(t)− Γ̇RISE(t)− Γ̇FW (t) (4.27)

Where N(e1, e2, r, t) ∈ Rn was defined in (4.15). To facilitate the stability analysis of this
control solution one should reformulated (4.27) in the following form:

M(q)ṙ = −1
2Ṁ(q)r + Nd + Ñ− e2(t)− Γ̇RISE(t)−NFw (4.28)

Where Nd ∈ Rn and Ñ ∈ Rn were already defined in (4.17) and (4.19), respectively. The
variable NFw = Γ̇FW (t) is introduced for the subsequent stability analysis.
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Stability Analysis

Before to present the stability analysis of the proposed control solution 1. Let us establish
the following lemma which is a slightly modification of the Lemma 1 presented in [Xian et al.,
2004].

Lemma 1 An auxiliary function called L(t) ∈ Rn is defined as:

L(t) = r(Nd(t)−NFW (t)− βsgn(e2)) (4.29)

If the controller gain β is chosen to satisfy the following inequity:

β > ||Nd(t)||L∞ − ||NFW (t)||L∞ + 1
Λ2

(
||Ṅd(t)||L∞ − ||ṄFW (t)||L∞

)
(4.30)

Then ∫ t

0
L(τ)dτ ≤ ζb (4.31)

In which ζb is a positive constant defined as:

ζb = β||e2(0)||+ e2(0)T (NFW(0)−Nd(0)) (4.32)

Proof 1 See Appendix A

Theorem 1 The tracking error in joint space e1 of a PKM whose dynamics is given by (4.6)
under the control law (4.23) converges asymptotically to zero as long as time goes to infinity
if the gain Ks is chosen large enough, and the following design parameters are selected such
that:

Λ1 >
1
2 , Λ2 > 1, β > ||Nd(t)||L∞ − ||NFW (t)||L∞ + 1

Λ2

(
||Ṅd(t)||L∞ − ||ṄFW (t)||L∞

)

Proof 2 Let D ⊂ R3n+1 a domain containing

y(t) = [zT (t)
√

P(t)]T = 0 (4.33)

Where P(t) ∈ Rn is a supplementary function introduced as:

P(t) = β||e2(0)|| − e2(0)T (NFW (0)−Nd(0))−
∫ t

0
L(τ)dτ (4.34)

The time-derivative of (4.34) can be written as follows:

Ṗ(t) = −rT (Nd(t)−NFW (t)− βsgn(e2)) = −L(t) (4.35)

One can note that P(t) ≥ 0, ∀t ≥ 0 taking into account (4.30) and (4.31)
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Now, Let us define the following Lyapunov candidate function V(y, t) : D× [0,∞)→ R being
a continuously differentiable positive-definite function as:

V(y, t) = 1
2rTM(q)r + eT1 e1 + 1

2eT2 e2 + P (4.36)

Equation (4.5) satisfies the following inequality

λ1||y||2 ≤ V(y, t) ≤ λ2(||y||)||y||2 (4.37)

In which
λ1 = 1

2min{1,m}, λ2(||y||) = max{1
2m(||y||), 1}

Computing the time-derivative of (4.36) leads to:

V̇(y, t) = 1
2rTṀ(q)r + rTM(q)ṙ + 2e1ė1 + eT2 ė2 + Ṗ (4.38)

Substituting (4.35), (4.27), (4.16) and considering (4.7)-(4.9), expression (4.38) can be re-
written as:

V̇(y, t) =rT
(
−1

2Ṁ(q)r + Nd + Ñ− e2(t)− ((Ks + I)r + βsgn(e2))−NFw

)
+ 2e1(e2 −Λ1e1) + eT2 (r−Λ2e2)− rT (Nd −NFW − βsgn(e2))

+ 1
2rTṀ(q)r

(4.39)

Since Ks, I, Λ1, and Λ2, are positive definite diagonal gains matrices., and all the elements
of each diagonal have the same value. We can simplified V̇(y, t) as:

V̇(y, t) = rT Ñ− (Ks + 1)rT r− 2Λ1eT1 e1 − Λ2eT2 e2 + 2eT2 e1 (4.40)

Where the terms rT r, eT1 e1, eT2 e2, and eT2 e1 can be upper bounded as follows:

rT r ≤ ||r||2, eT1 e1 ≤ ||e1||2, eT2 e2 ≤ ||e2||2, eT2 e1 ≤
1
2 ||e1||2 + 1

2 ||e2||2 (4.41)

Substituting the inequalities of (4.41) into (4.40) and rearranging terms, V̇(y, t) can be upper
bounded as:

V̇(y, t) ≤ rT Ñ + ||e1||2 + ||e2||2 − (Ks + 1)||r||2 + 2Λ1||e1||2 − Λ2||e2||2 (4.42)

Taking into account (4.20), the previous equation can be written as:

V̇(y, t) ≤ ||r||ρ(||z||)||z||+ ||e1||2 + ||e2||2 − (Ks + 1)||r||2 + 2Λ1||e1||2 − Λ2||e2||2 (4.43)

Rearranging terms, equation (4.43) can be expressed as follows:

V̇(y, t) ≤ λ3||z||2 −
(
Ks||r||2 − ρ(||z||)||z||||r||

)
(4.44)
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Where λ3 = min{2Λ1 − 1,Λ2 − 1, 1}, and ρ(||z||) ∈ Rn is a positive globally invertible non-
decreasing function [Patre et al., 2006]. From λ3 one can see that Λ1 and Λ2 must be chosen
according the following inequalities:

Λ1 >
1
2 , Λ2 > 1 (4.45)

By developing the squares of the last term of (4.44), such expression is re-written as:

V̇(y, t) ≤ −
(
λ3 −

ρ2(||z||)
4Ks

)
= c||z||2 (4.46)

In which, c||z||2 is a continuous positive semi-definite function being it defined on the following
region

D =
{
y ≤ R3n+1| ‖ y ‖≤ ρ−1

(
2
√
λ3Ks

)}
(4.47)

The following subset of D can be defined by:

S =
{

y(t) ⊂ D|c||z||2 < λ3

(
ρ−1

(
2
√
λ3Ks

))2
}

(4.48)

According to [Bennehar et al., 2018] c||z||2 is consistently continuous in D. So, one can
conclude that:

c||z||2 → 0 as t→∞ ∀y(0) ∈ S (4.49)
Therefore

||e1|| → 0 as t→∞ ∀y(0) ∈ S (4.50)
And here the stability proof of this controller is concluded.

4.5 Control Solution 2: A RISE Feedforward controller
with Adaptive Feedback Gains

4.5.1 Motivation

It is well known that for robotic systems developing tasks where the end-effector is in contact
with a stiff environment such as grinding, machining, or assembly tasks, a specific interacting
wrench is required to ensure accuracy. Therefore, force contact control may be required.
According to [Taghirad, 2013], the problem of force control can be described as to derive the
actuator forces to generate a specified desired wrench (force or torque) at the end-element
of the manipulator, when the manipulator is performing its desired motion. Therefore, to
implement a force control-loop with the positioning control, it is necessary to have wrench
sensors on the end-element or directly on the actuators. SPIDER4 is an RA-PKM designed
for machining applications such as milling or drilling in resin materials. Nevertheless, for
hardware limitations, it is not possible to integrate any wrench sensor to SPIDER4 in order
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to implement a force control-loop. As an alternative of the force control-loop, we propose to
modify the already presented control solution 1 in the following form. The fixed gains Ks

and Λ2 of the RISE control part will be modified as adaptive time-varying. The purpose
of this action is because when the tracking errors start to increase due to contact forces on
the material to be machined, corrective action will produce to reduce such tracking error
values’. If tracking errors become big, then gains Ks and LA also will increase their values.
Nevertheless, when the tracking errors will at some fair value, the values for Ks and Λ2 will
decrease, adjusting themselves to the best optimum value. The purpose of this modification
of the gains is to improve the tracking performance when the robot is performing a machining
task. With the above in mind, let us start with the description of the control solution 2.

4.5.2 Proposed Control Law

The proposed control law for machining solutions is expressed as follows:

Γ(t) = ΓARISE + ΓFW (4.51)

Where ΓFW ∈ Rn corresponds to the nominal feedforward term described in (4.24), and
ΓARISE ∈ Rn is the RISE controller with adaptive feedback gains whose mathematical
expression is given as follows:

ΓARISE(t) =(Ks(t) + I)e2(t)− (Ks(t) + I)e2(0)

+
∫ t

0
[(Ks(τ) + I)Λ2(τ)e2(τ) + βsgn(e2(τ))]dτ

(4.52)

Where the adaptive gains Ks(t) and α2(t) are adjusted by a modification concept of the
adaptive gains presented in [Plestan et al., 2010] as follows:

Ks(t) = K̄s|η|+ K2 (4.53)

Λ2(t) = Λ̄2|η|+ K3 (4.54)
In which, K̄s and Λ̄2 ∈ Rn×n are positive-definite constant diagonal matrices used in the
adaptation process of the controller feedback gains, and K2, K3 ∈ Rn×n are other positive-
definite constant diagonal matrices that establish the minimum possible value for each adaptive
feedback gains. η ∈ Rn is a nonlinear function depending on the combined joint tracking
error e2.

η̇ = tanh(e2)− η (4.55)

Controller Design

Let us consider the dynamic model of a PKM presented on (4.6) together with the equations
defining the control solution 2 (4.52)-(4.55). To express the closed-loop control system, it is
necessary to reformulate the unmeasurable combined tracking error defined in (4.9) as:

r(t) = ė2(t) + Λ2(t)e2(t) (4.56)
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Where Λ2(t) was already defined in (4.54). Multiplying both sides of (4.56) and making use
of (4.6) and (4.8), the following is obtained:

M(q)r =C(q, q̇)q̇ + G(q) + f(q, q̇) + Γd(t)
+M(q)(q̈d + Λ1ė1 + Λ2(t)e2(t))− ΓARISE(t)− ΓFW (t)

(4.57)

For stability analysis purposes one can compute the derivative with respect to time of (4.57),
yielding the following expression:

M(q)ṙ =− Ṁ(q)r + C(q, q̇)q̈ + Ċ(q, q̇)q̇ + Ġ(q) + ḟ(q, q̇) + Γ̇d(t) + M(q)˙̇q̇d
+ Ṁ(q)q̈d + Λ1(M(q)ë1 + Ṁ(q)e1) + M(q)(Λ2(t)ė2(t) + Λ̇2(t)e2(t))
+ Ṁ(q)Λ2(t)e2(t)− Γ̇ARISE − Γ̇FW

(4.58)

Where the time-derivative of ΓARISE is expressed as:

Γ̇ARISE = (Ks(t) + I)ė2(t) + [(Ks(t) + I)Λ2(t) + K̇s(t)]e2(t) + βsgn(e2(t)) (4.59)

The closed-loop error system can be expressed in the following form:

M(q)ṙ = −1
2Ṁ(q)r + N(e1, e2, r, t)− e2(t)− Γ̇ARISE − Γ̇FW (4.60)

Where the nonlinear term N(e1, e2, r, t) ∈ Rn is written as:

N(e1, e2, r, t) = C(q, q̇)q̈ + Ċ(q, q̇)q̇ + Ġ(q) + ḟ(q, q̇) + Γ̇d(t) + M(q)˙̇q̇d
+ Ṁ(q)q̈d + Λ1(M(q)ë1 + Ṁ(q)e1) + M(q)(Λ2(t)ė2(t)

+ Λ̇2(t)e2(t)) + Ṁ(q)Λ2(t)e2(t) + e2(t)− 1
2Ṁ(q)r

(4.61)

For stability analysis purposes (4.60) is re-written following the same procedure as in the
control solution 1.

M(q)ṙ = −1
2Ṁ(q)r + Nd + Ñ− e2(t)− Γ̇ARISE −NFW (4.62)

In which, Ñ = N−Nd begin Nd defined in (4.17). Since the nominal feedforward term for this
control solution is the same as the previous one controller, one can establish NFW = Γ̇FW .

Criterion for Adaptive Gains

Since the nonlinear functions Ks(t) and Λ2(t) are continuously differentiable, they can be
bounded in the following form:

K2 ≤ Ks(t) ≤ KsM (4.63)
K3 ≤ Λ2(t) ≤ Λ2M (4.64)

Where KsM and Λ2M ∈ Rn×n represent the maximum admissible values that Ks(t) and Λ2(t)
can obtain.
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Stability Analysis

Theorem 2 The tracking error in joint space e1 of a PKM whose dynamics is given by (4.6)
under the control law (4.51) converges asymptotically to zero as long as time goes to infinity
if the following design parameters are selected such that:

i) Λ1 >
1
2

ii) Λ2M > K3

iii) β > ||Nd(t)||L∞ − ||NFW (t)||L∞ + 1
Λ2M

(
||Ṅd(t)||L∞ − ||ṄFW (t)||L∞

)
Proof 3 Considering the same auxiliary function L(t) defined in (4.28), the following in-
equality is holding: ∫ t

0
L(τ)dτ ≤ β||e2(0)||+ e2(0)T (NFW(0)−Nd(0)) (4.65)

If β is now selected to satisfied the following condition:

β > ||Nd(t)||L∞ − ||NFW (t)||L∞ + 1
Λ2M

(
||Ṅd(t)||L∞ − ||ṄFW (t)||L∞

)
(4.66)

Let us consider the Lyapunov function defined in (4.36)

V(y, t) = 1
2rTM(q)r + eT1 e1 + 1

2eT2 e2 + P

Developing the time-derivative of (4.36) and making use of (4.35), (4.60), (4.59), (4.56), and
(4.8), the following equation results:

V̇(y, t) = rT Ñ− (Ks(t) + 1)rT r− K̇s(t)rTe2 + 2eT1 e2 − 2Λ1eT1 e1 − Λ2(t)eT2 e2 (4.67)

Considering the lower bounds for Ks(t) and Λ2(t) and the relationships presented in (4.41),
expression (4.67) can be bounded as follows:

V̇(y, t) ≤||r||ρ(‖ z ‖)||z|| − (K2 + 1)||r||2 − |Ksdm|
2 ||r||2 − |Ksdm|

2 ||e2||2

+||e1||2 + ||e2||2 − 2Λ1||e1||2 −K3||e2||2
(4.68)

Where Ksdm denotes a lower bound for K̇s(t) as is explained in [Saied et al., 2019a]. The
previous equation can be re-written in the following form:

V̇(y, t) ≤ −λ3||z||2 −
(
K2||r||2 − ρ(‖ z ‖) ‖ r ‖ ||z||

)
(4.69)

In which, z(t) ∈ R3n represents the vector containing the different tracking errors of the
system described by equation (4.21), and λ3 = min{η1, η2, η3}, where the constants η1, η2,
and η3 are established as:

η1 = 2Λ1 − 1, η2 = |Ksdm|
2 +K3 − 1, η3 = |Ksdm|

2 + 1 (4.70)
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Form (4.70) one can see that Λ1 must be chosen such that Λ1 > 1/2. Completing the squares
for the second and last term of (4.69), the following expression is obtained:

V̇(y, t) ≤ λ3||z||2 −
ρ2(z)||z||2

4K2
= −c||z||2 (4.71)

In (4.71) the term c||z||2 denotes a continuous positive semi-definite function which is specified
in the following domain:

D =
{
y ≤ R3n+1| ‖ y ‖≤ ρ−1

(
2
√
λ3K2

)}
(4.72)

The following subset of D can be defined by:

S =
{

y(t) ⊂ D|c||z||2 < λ3

(
ρ−1

(
2
√
λ3K2

))2
}

(4.73)

According to [Bennehar et al., 2018] c||z||2 is consistently continuous in D. So, one can
conclude that:

c||z||2 → 0 as t→∞ ∀y(0) ∈ S (4.74)

Therefore
||e1|| → 0 as t→∞ ∀y(0) ∈ S (4.75)

And here the stability proof of this controller is concluded.

4.6 The actuation redundancy on SPIDER4

In Chapter 1, it was explained the different challenges involved in the control of PKMs. One
of them is the actuation redundancy that is present on Parallel robots having more actuators
that DOF [Mueller, 2011]. Such is the case of the SPIDER4, which has 5-DOF (3T-2T),
where the positioning device develops the 3T-DOF using four actuators located on the fixed
base. We mentioned that robotics systems with this type of configuration have advantages
compared with their non-redundant counterparts, such as higher accuracy and improved
stiffness. Furthermore, actuation redundancy can also lead to singularity-free large workspaces.
However, this configuration leads to the generation of internal forces that may create pre-stress
in the mechanism without operational motions, and it can damage the mechanical structure
of the robot. According to [Hufnagel and Muller, 2012], the internal forces can be caused by
geometric uncertainties and may be amplified by the use of decentralized control techniques.
This may lead to uncoordinated control of the individual actuators since such a control law
does not account for kinematic constraints. In order to avoid such an issue, the use of a
projection matrix can be used, which is based on the pseudo inverse jacobian matrix evaluated
with the desired variables H(qd,

o NNd) ∈ Rm×n. The projection operator is defined by:

RH = (H+)THT (4.76)
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Figure 4.4: Block-diagram of the proposed control solution 1 for the parallel device of SPIDER4
RA-PKM

The projection matrix RH eliminates the control inputs in the null-space of HT . Hence, all
control inputs applied to the manipulator have to be ’regularized’ using this projection matrix
as follows:

Γ∗ = RHΓ (4.77)

Where Γ denotes the torques vector generated by the control scheme. Therefore, all torques
generated by the presented control solutions 1, and 2 for SPIDER4, must be regularized
before sending them to the manipulator. Figures 4.4 and 4.5 present block diagrams of the
proposed control solution 1 and 2 including the proyection operator.

4.7 Control Solution 3: A RISE controller with Adap-
tive Feedforward Compensation Based-on B-Spline
Neural Networks

4.7.1 Motivation

The main objective of a Delta PKM is to perform high speed and high accuracy P&P operations
with the smallest possible tracking error. To reach this objective, it is crucially essential to
design a control scheme capable of keeping the precision under abrupt changes of mass and
acceleration. To satisfy these demands, we propose integrating the RISE control algorithm
with an adaptive feedforward compensation term. The main feature of RISE controller can
ensure semi-global asymptotic stability in the presence of general uncertain disturbances [Xian
et al., 2004]. It is well known in robotics control that the addition of a feedforward term
can compensate the inherent nonlinearities and improve the system performance. However,
sometimes, the dynamic model or dynamic parameters as masses and inertia are unknown or
not measurable. Consequently, wrong parameter estimation or an inaccurate dynamic model
can harm the efficiency of the control scheme instead of improving. ANNs are an attractive
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Figure 4.5: Block-diagram of the proposed control solution 2 for the parallel device of SPIDER4
RA-PKM

solution for nonlinear modeling systems due to their ability to identify unknown dynamic
models through a set of inputs and outputs related to each other. BSNN is a kind of ANN
formed by three parts: A lattice used to normalize the inputs, a single layer set of basis
functions defined over the lattice, and the network output, which is a linear combination of the
basis functions with the adjustable weights [Lopes et al., 2000]. This ANN is very suitable for
nonlinear model identification in real-time due to its construction formed by only one hidden
layer of basis functions avoiding large number calculus compared to any multilayer ANN. In
this thesis, we employed BSNNs to approximate the inverse dynamics for each kinematic
chain of the Delta PKM.

4.7.2 Controller Design

Having in mind the benefits of RISE control and ANN, we establish the following control
scheme for the Delta PKM:

Γ = ΓRISE + Σ̂(qd, q̇d, q̈d, e2) (4.78)

where ΓRISE ∈ Rn corresponds to feedback RISE control (4.12), and the term Σ̂(qd, q̇d, q̈d, e2) ∈
Rn is the intelligent compensation term vector based on BSNNs whose elements are defined
as:

Σ̂ = [σ̂1 σ̂2 σ̂3]T (4.79)

where σ̂i ∀i = 1, 2, ..., n denotes the respective BSNN output used to approximate the
dynamics of one kinematic chain of Delta PKM. In Figure 4.6 general overview of the
proposed control technique applied to a Delta PKM is illustrated.



92 CHAPTER 4. PROPOSED CONTROL SOLUTIONS

Trajectory Generator
in Cartesian Space

Inverse Kinematic
Algorithm

RISE Controller

Xd=[xd, yd, zd]
T

 qd=[q1d, q2d, q3d]
T

BSNN Compensator

e1(t)=eq(t)+ 1eq(t).
+
+

eq

q=[q1, q2, q3]
T

RISE

^

Trajectory Generation
in joint space

qd qd qd
. ..

Figure 4.6: Representation of the proposed control solution 3 for Delta PKM

Design of the feedfoward term based on BSNNs

As it was mentioned above, the BSNNs aims to estimate on-line the dynamic behavior of the
DPR to include it into the control loop as a feedforward compensation term. Let us remember
the expression corresponding for the nominal feedforward term (4.24).

M(qd)q̈d + C(qd, q̇d)q̇d + G(qd) = ΓFW

In this proposed control solution M ∈ Rn×n, C ∈ Rn×n, and G ∈ Rn are considered unknown.
From (4.24), one can see that the Inertia, Centripetal/Coriolis matrices, and the gravity vector
are evaluated with the desired trajectories qd, q̇d, q̈d instead of the measured ones. Therefore,
we set the trajectories values as the data input for the BSNNs. An important aspect of the
design of each BSNN is to define the input space lattice formed by a set of n knot-vectors,
one-knot vector for each input axis. Once the input data is established, the next step is to
define the K order, shape, number, and distribution of the basis functions. The K order
defines the shape of the basis functions, i.e., if K = 1, we obtain piecewise constant functions,
K = 2 leads to piecewise linear functions, K = 3 generates piecewise quadratic functions and,
when K = 4 piecewise cubic functions are obtained. Selecting a higher-order for the functions
result in a better approximation. The number of knots and the value of each one, as well as
the interval between them, are set by prior knowledge of the selected BSNN inputs. Dynamics
of Parallel Robots are highly and complex; thus, we selected basis functions of third-order
to acquire an accurate approximation of the dynamics behavior without making a greater
number of calculations as may occur with cubic functions. A knot-vector is defined for each
input axis considering the extreme admissible values of the trajectories as the maximum and
minimum values of the input vectors. For the axes where qd are the inputs the minimum
and maximum values are from -1 to 1 rad respectively, -10 to 10 rad/s for q̇d and -200 to
200 rad/s2 for q̈d. Once the input range is already defined for the input axes, the next step
is to define the number and distribution of j − th knots of the vector. Each knot-vector is
formed by 8 knot-points and they are distributed in groups of four elements to generate three
b-spline functions that share some knot-points among them. We selected this configuration
because it gives a good approximation of the system behavior, as being reported in the results
section. In Figure 4.7, the distribution of the knot-points and B-spline functions for each
input axis are depicted. The knot-points values for the input axes are given in Table 4.1.
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Figure 4.7: Distribution of the proposed activation functions of order 3 for the respective
inputs

Table 4.1: Knot-points Vectors’ distribution
Input Knot-points Vector

[−1 −0.75 −0.5 −0.25]
qd [−0.5 −0.25 0.25 0.5]

[0.25 0.5 0.75 1]
[−10 −7.5 −5 −2.5]

q̇d [−5 −2.5 2.5 5]
[2.5 5 7.5 10]
[−200 −150 −100 −50]

q̈d [−100 −50 50 100]
[50 100 150 200]



94 CHAPTER 4. PROPOSED CONTROL SOLUTIONS

a1

a2

a3

a4

a5

a6

a7

a8

a9

+

w1

w2

w3

w4

w5

w6

w7

w8

w9

σi
^

Normalized 

Inputs
Basis 

Functions

Adjustable 

Weights

Output

a

w

Figure 4.8: Diagram of the proposed BSNN used as a compensation term for each kinematic
chain of the Delta PKM

The B-Spline Function

We proceeded to present the expression of univariate B-Spline basis function, which is defined
through the following recurrence relationship [Mirea, 2014]:

SjK(u) =
(

u− λj−K
λj−1 − λj−K

)
Sj−1
K−1(u) +

(
λj − u

λj − λj−K+1

)
SjK−1(u)

Sj1(u) =

1 if u ∈ Ij
0 other cases

(4.80)

where u corresponds to the input, λj is the jth knot point and Ij = [λj−1, λj) is the jth
interval between two-knot points, and K is the order of the output function. The output of
each one of the BSNN can be written as follows [Brown and Harris, 1994]:

σ̂i =
P∑

m=1
amwm = aTi wi ∀i = 1, 2, 3 (4.81)

where ai is a P -dimensional vector which contains the outputs of the BSNN basis functions
and, wi is the weights vector. The diagram depicted in Figure 4.8 represents the BSNN
configuration for the Delta PKM dynamic estimation.
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Learning Rule

An instantaneous training algorithm is used for the BSNN; this algorithm only adjusts
the weights corresponding to the active basis functions. The instantaneous learning rule is
formulated, minimizing an instantaneous estimation of a performance function of the Mean
Square Error (MSE) of the output, and the parameters are updated using descending gradient
rules. The MSE estimate is given by:

Je(t) = (σ̂(t)− σ(t))2 (4.82)

A variation of the standard descending gradient is the Normalized Least Mean Square (NLMS)
algorithm employed for instantaneous training. We used this formulation as a learning rule
because it uses few computational resources, which is essential for real-time implementation.
The learning rule is given as follows [Brown and Harris, 1994]:

wi = wi(t− 1) + γσ̃i(t)
||ai(t)||22

ai(t) ∀i = 1, 2, 3 (4.83)

where γ is the learning rate, ai is the vector that contains the output of the basis functions,
Wi is the adjustable weights vector, and σ̃i(t) = σi(t)− σ̂i(t) is the BSNN output error. To do
the on-line training of the BSNN, it is necessary an error signal that is the difference between
the real variable and the estimated by the BSNN. However, in this case, the real value is not
available since it is required to obtain through the BSNN. For this reason, it is consistent
with using the measurement of the robot’s position and comparing it with the values of the
established desired trajectory to obtain an error signal. In this case, σ̃i(t) is estimated using
the composed tracking error e1, as illustrated in Figure 4.6.

4.8 Conclusion
In this chapter, the thesis contributions related to control for PKMs were presented. Three
control solutions were detailed, emphasizing the purpose of why they were proposed based on
the applications that the experimental platforms develop. The proposed control solutions
were: A RISE control with nominal feedforward, a RISE feedforward with adaptive feedback
gains, and a RISE control with adaptive feedforward compensation based-on B-Spline neural
networks. The first controller was proposed to validate the effectiveness of the developed
kinematic and dynamic for SPIDER4 RA-PKM. The second one was designed to improve
the tracking performance of a PKM as SPIDER4 that develops tasks were contact forces
are involved as machining; there are not any feedback sensors to measure such contact
forces. Finally, the third one controller was conceived to estimate on-line the dynamics of the
manipulator to be controlled and include such estimations as a feedforward compensation
term. For SPIDER4, a method to deal with the problem of internal forces generation due to its
redundantly actuated configuration was detailed. Moreover, the stability analysis for control
solutions 1 and 2 was formulated. In the next thesis chapter, the real-time experimental
results using control solutions 1 and 2 on SPIDER4 will be presented.
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5
C h a p t e r

Experimental Results on SPIDER4
RA-PKM

In this chapter, the real-time experimental results of the control solutions 1 and 2
implemented on SPIDER4 RA-PKM are presented and discussed. The experimental setup
and programming issues for the controllers are also explained in detail. Several graphs and
performance indexes are used to demonstrate the effectiveness of the proposed control
solutions under different scenarios.
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5.1 Introduction

The proposed RISE with nominal feedforward and RISE feedforward with adaptive gains are
validated via real-time experiments under different scenarios. The control solution 1 is only
evaluated in a nominal scenario, which is free motion without any physical contact on the
spindle tip because the objective of the first control solution is only to prove the veracity of
the proposed IDM of SPIDER4. The obtained performance of RISE with nominal feedforward
is evaluated against the produced of the standard RISE control. A machining scenario is
used to validate the proposed control solution 2. The machining experiments are carried
out on blocks of styrofoam, which is an excellent material to perform the first machining
tests of SPIDER4. The machining scenario is performed under three forward speeds (low,
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medium, and high) in order to see how the precision is affected when the same task is executed
at different speeds. The RISE’s obtained performance feedforward with adaptive gains is
compared to that produced by Standard RISE and RISE with nominal feedforward controllers.
Without further ado, let us start with the description of the experimental setup of SPIDER4
and its implementation issues.

5.2 Description of the Experimental Setup, and
Implementation Issues

5.2.1 Description of Experimental Setup

Figure 5.1 presents an overview of SPIDER4 in its work cell, including the tooling plate used
to fix the material block to be machined. SPIDER4 uses different actuators to perform the
linear motions of the parallel positioning device and the wrist. SPIDER4. Four WITTESTEIN
TPMA110S-022M-6KB1-220H-W6 are responsible for performing the movements on x, y, and
z axis, each actuator include a gearhead with a gear ratio of 1:22 providing a peak torque of
3100 Nm and 189 rpm as maximum rotation speed. In order to measure the joint positions,
these motors are equipped with multiturn absolute encoders. On the nacelle, three actuators
perform the independent angular motions φ and ψ as well as the spindle’s movement. The
motor responsible for the movement in the φ axis is STOBER EZH501USVC4P097 motor;
this actuator can generate a peak torque of 200 Nm. To perform the angular motion in the
ψ axis, a HARMONIC DRIVE CHA-20A-30-H-M1024-B is used, this motor can provide a
peak torque of 27 Nm. Finally, the B&R 8JSA24.E4080D000-0 is used for the actuation
of the spindle machining tool. This motor can provide a torque of 1.41 Nm and a related
speed of 8000 r.p.m. As was mentioned in Chapter 3, the implemented control solutions
affect only the main motors located on the fixed base. However, it is worth mentioning
the features of the other motors located on the nacelle. The joint velocities of SPIDER4
are not measured directly because the robot is not equipped with sensors to measure the
joint velocities. Notwithstanding, they are calculated through numerical derivatives to form
the joint positions’ measurements with a sampled time of 0.0004 sec. The structure of
each control scheme is created in Simulink software from MathWorks. The Simulink project
contains the kinematic algorithms, Jacobian matrices, and the control scheme for SPIDER4.
However, all the functionalities of SPIDER4, including the motion control, are programmed
in a B&R Automation Studio project. Therefore, a library called B&R Automation studio
target for Simulink is used to convert the Simulink code to C code and transfer it to the B&R
Automation Studio Project. When the all changes have been carried out to the project, the
next step is to compile and transfer them to the B&R Automation PC 910 with a sampling
time of 0.4 msec, sending and receiving the control signals to the X20 system which in turn
sends and receives signals to the inverted modules called ACOPOSmulti system regulating
each SPIDER4 motor.The SPIDER4 project is executed through a Graphic User Interface
(GUI) developed by Tecnalia Company and also programmed in B&R Automation Studio.
The experimental setup for SPIDER4 with the main components is illustrate in Figure 5.2.
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Figure 5.1: Overview of SPIDER4 RA-PKM in its work environment

5.2.2 Reference Trajectory Generation

To program a machining task on a CNC machine, the majority of them used the programming
language developed by the Electronics Industry Association (EIA) in the 1960’s named
RS-274D but this programming language is better known as “G-code” or “G&M-code”
because many of the instructions of this language starts with the letters G and M. The most
common addressed codes are described for this programming language are given in Table
5.1. For SPIDER4, the desired trajectories for the tested controllers are generated using
the CNC functionality of B&R AUTOMATION STUDIO. There exist many instructions to
programming CNC machines using G and M functions. However, only the codes used in the
presented experiments on SPIDER4 will be detailed.

• M3: Starts the spindle clockwise

• M30: Ends program

• F: Forward speed. For B&R Automation Studio the units are mm/min.

• G1: Linear motion. This command moves the tool in a straight line with the programmed
forward speed. e.g., Suppose that the spindle of the robot is initially in X0 Y0, and one
wants to move it to X10 Y15; the following line code is witted G1 X10 Y15 F1000
(see Figure 5.3a).
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Figure 5.2: Illustration of experimental setup of the SPIDER4
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Table 5.1: Common Alphanumeric Address Codes
Code Meaning Code Meaning

A Rotation about X-Axis O Program number
B Rotation about Y-Axis P Dwell time
C Rotation about Z-Axis Q Used in drill cycles
F Forward Speed R Arc Radius
G G-Code (preparatory code) S Spindle speed
H Tool Length Offset (TLO) T Tool number
I Arc center X-vector X X-coordinate
J Arc center Y-vector Y Y-coordinate
K Arc center Z-vector Z Z-coordinate
M M-Code (Miscellaneous code) N Block Number

• G2: Circular interpolation clockwise.This command moves the tool in a circular at
with the programmed forward speed. There are two forms to use this instruction one is
considering the I, J, and K instructions as follows. Suppose that initially, the spindle of
the robot is at position X0 Y20 and it is desired to move it to point X20 Y0 forming a
quarter circle whose center is at position X0 Y0 with a forward speed of 1000 mm/min.
The programming line would be expressed as G2 X20 Y0 I0 J-20 F1000. Where I
and J represents the offset on the X and Y axis, respectively (see Figure 5.3b for a better
understanding). The other way to program G2 is by using the ratio R specification.
The previous line code can be written as G2 X20 Y0 R20 F1000.

• G3: Circular interpolation counterclockwise. This command is basically the same as
G2, but the interpolation is performed on the opposite side.

Trajectory for Scenario 1

Scenario 1 consists of a free motion trajectory where the SPIDER4 spindle tip is not in contact
with any material to be machined. This trajectory is used to validate the RISE control with
nominal feedforward. Linear and circular interpolation are used to generate the path to follow.
Moreover, the trajectory integrates angular displacements for φ and ψ axes whose movements
are controlled independently to the proposed controller. The established forward speed F for
all trajectory is 12000mm/min. Figure 5.4 depicts the trajectories evolution with respect
to time and the tridimensional representation. The points sequence of this trajectory is in
Appendix B. However, because of the proposed control solutions for SPIDER4 only cover the
parallel mechanism without the wrist, it is necessary to provide the reference trajectories just
for the nacelle. Nacelle trajectories in Cartesian space are computed evaluating (3.36) with
the data provided in Figure 5.4, the resulting trajectories for the nacelle are shown in Figure
5.5.
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Figure 5.3: Interpolation examples using G1 and G2 instructions
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Figure 5.5: Desired trajectory of the nacelle in Cartesian space versus time

Trajectory for Scenario 2

The trajectory generated for this scenario is used for the validation of the RISE feedforward
with adaptive gains. Compared to the previous trajectory, this one is more complex due to a
large number of operations it contains to generate different geometric shapes. This trajectory
describes a milling machining process on a flat piece of styrofoam with a witness of one inch.
The G-code for this milling machining task was firstly simulated in WinUnisoft software from
Alecop for a safety implementation on SPIDER4. The cutting depth established for these
experiments is 5mm, where the cutting speed established for the spindle S is 7000 rpm. One
can modify the speed S from the G-code, but it is not possible to do it automatically by the
established control law. Figure 5.6 depicts the flat piece to be machined with its dimensions.
The trajectory generated by G code is shown in three dimensions in Figure 5.7, where the
lines in blue describe the part of the trajectory where the robot is not cutting material while
the lines in red represent the sections of the trajectory where the spindle is devastating the
styrofoam. The Second scenario is executed at different forward speeds in order to see the
impact the speed changes have on the controllers’ performance. The speeds values are listed
below.

• F=1200 mm/min (low speed)

• F=2400 mm/min (medium speed)

• F=1200 mm/min (high speed)

Figure 5.8 represents the desired trajectories in Cartesian space for x, y, and z with respect
to time executed at the specified forward speeds.
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5.2.3 Performance evaluation criteria

In order to quantify the performance of the proposed control solutions 1 and 2, the Root
Mean Square Error (RMSE) formula is used. It enables us to quantify the accuracy obtained
by the tested controller in only one numerical data. The RMSEs expressions for SPIDER4
positioning device in Cartesian (RMSEC) and joint space (RMSEJ) are given as follows:

RMSEC =

√√√√ 1
N

N∑
k=1

(e2
xn(k) + e2

yn(k) + e2
zn(k)) (5.1)

RMSEJ =

√√√√ 1
N

N∑
k=1

(e2
11(k) + e2

12(k) + e2
13(k) + e2

14(k)) (5.2)

where exn, eyn, ezn denote the Cartesian position tracking errors of the nacelle along the x, y, z
axes, while e11, e12, e13, e14 are the different joint space tracking errors. N is the number
of samples. The following performance indexes will be used exclusively in the evaluation
of the control solution 1 under the first scenario. These indexes are: The Integral Time
multiplied by the Absolute Error (ITAE), the Integral Time multiplied by the Absolute
Squared Error (ITASE), and the Integral of the Absolute Square Error (ISAE) [Rosales-Díaz
et al., 2019], whose mathematical equations are given as follows for Cartesian space and joint
space respectively.

ITAEC =
∫
t.|exn(t) + eyn(t) + ezn(t)|dt

ITASEC =
∫
t.|exn(t) + eyn(t) + ezn(t)|2dt

IASEC =
∫
|exn(t) + eyn(t) + ezn(t)|2dt

ITAEJ =
∫
t.|e11(t) + e12(t) + e13(t) + e14(t)|dt

ITASEJ =
∫
t.|e11(t) + e12(t) + e13(t) + e14(t)|2dt

IASEJ =
∫
|e11(t) + e12(t) + e13(t) + e14(t)|2dt

(5.3)

5.2.4 Tuning Gains procedure

For both controllers tested on SPIDER4, the gains were selected via trial and error method
since there are phenomena such as noise, which can be considerably amplified if the gains
are not well selected, damaging the system’s performance. Unfortunately for real-time
experimentation, it is difficult to perform a gain adjustment analytically when there is noise,
so the best solution is to do it by trial and error until proper performance is achieved.

Tuning gains procedure for control solution 1

For the proposed RISE control with nominal feedforward and the Standard RISE, firstly, we
established a value large enough for Λ1 and Ks, then we set a value of 1 for Λ2 subsequently,
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Table 5.2: Controllers Gains
RISE/RISE FW RISE FW AG

Λ1 = 110 Λ1 = 110
Λ2 = 10 Λ̄2 = 3500
Ks = 33 K̄s = 3500
β = 8 β = 8

K2 = 33
K3 = 1

that value is progressively increased until obtaining the minimum possible tracking error.
If the tracking error starts to increase, we proceed to reduce the value of Λ2. The value of
the gain β increases the robustness of the controller. However, this value must be set very
small at the beginning and gradually increase in order to avoid the phenomenon of chattering.
Table 5.2 in the first column presents the values of the gains for the Standard RISE and RISE
with nominal feedforward.

Tuning gains procedure for control solution 2

The gains adjustment for this case is similar to the previous one. First, we establish a value
large enough for Λ1, which in this case, is equal to that of scenario 1 because it is the same
gain. The gains K2 and K3 represent the minimum values that the gains Ks(t) and Λ2(t) can
take, respectively. The gains Ks, and Λ2 are adjusted according to the desired sensibility to
changes of the tracking error in joint space in order to increase the output value of Ks(t) and
Λ2(t). Finally, the value for β is keeping the same as in control solution 1. The gains values
for the RISE feedforward controller with adaptive gains are presented in Table 5.2 in the
second column.

5.3 Experimental results of control solution 1

The experimental results of the RISE controller with nominal feedforward are compared
to standard RISE control in order to see the obtained enhancement when the IDM of the
positioning device of SPIDER4 is used as the nominal feedforward term. The different tracking
errors in Cartesian and joint space for the Standard RISE and RISE feedforward are depicted
in Figures 5.9 and 5.10, respectively. It can be seen that the proposed RISE controller
with nominal feedforward significantly reduces the overshoots with respect to the Standard
RISE control, and even though both tracking errors for the whole trajectory are small. The
tracking errors in the Cartesian space depicted in Figure 5.9 were calculated using the FKM
because the controllers are in function of the joint variables since there is no sensor available
to measure the nacelle position directly. The generated torques by the RISE feedforward
controller are shown in Figure 5.11, where we can note that the steady-state values for the
produced torques Γ1 and Γ2 are positive, while the torques Γ3, and Γ4 are negative due to the
orientation of the kinematic chains and the gravity effects which are different for the upper
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Figure 5.9: Evolution of the tracking errors in Cartesian Space versus time

0 5 10 15 20

-0.05

0

0.05

0.1

e
11

[D
eg

]

RISE RISE Feedforward

0 5 10 15 20

-0.05

0

0.05

0.1

e
12

[D
eg

]

0 5 10 15 20
-0.1

-0.05

0

0.05

e
13

[D
eg

]

0 5 10 15 20

Time [Sec]

-0.1

-0.05

0

0.05

e
14

[D
eg

]

Figure 5.10: Evolution of the tracking errors in joint space versus time
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Figure 5.11: Evolution of the torques generated by RISE controller with nominal feedforward
versus time

Table 5.3: Controllers Performance Evaluation
RMSEC Improvement RMSEJ Improvement
(cm) Cartesian (Deg) Joint

RISE 0.0432 0 % 0.0552 0 %
RISE Feedforward 0.0330 23.51 % 0.0420 23.95 %

and the lower chains. From Figure 5.11 also, we can note the presence of noise in the control
signals. The noise phenomena came from the fact that measured encoder signals yield noise
even if it is not very noticeable. Thereby, when these signals are processed in the control
loop, the numerical derivative operations amplify the effect of the noise, resulting in noisy
control signals. We did not use a filter at the output of the controller since it may affect the
robustness of the controller, in addition to that the computational cost may also increase
without significant improvement in the performance of the overall system. The computed
RMSEs along the desired trajectories for the nacelle presented in Figure 5.5 are given in
Table 5.3. The Table also presents the percentage of improvement of the control solution 1
with respect to the Standard RISE. controller As shown in Table 5.3, the RISE feedforward
improvement with respect to the standard RISE controller is up to 23%. To reinforce the
superiority of the proposed RISE control with nominal feedforward with respect to standard
RISE, we evaluate the resulting tracking error for both controllers with the performance
indexes given in equation (5.3), where the evaluation results are depicted in Table 5.3. The
behaviors of each one of the performance indexes are shown in Figure 5.12. It is appreciated
in the results for Cartesian space that the RISE feedforward control improves the standard
RISE control by 36% considering ITAEC, 62% if ITASEC is taken into account, and 59%
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Table 5.4: Controllers performance Evaluation Using Performance Indexes
Tracking Error Performance Index RISE RISE Feedforward

ITAEC 7.899 6.555
Cartesian Space ITSAEC 0.418 0.227

IASEC 0.041 0.020
ITAEJ 8.048 5.076

Joint Space ITSAEJ 0.507 0.189
IASEJ 0.047 0.019
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Figure 5.12: Evolution of the different performance indexes for Cartesian and joint space with
respect to time

using IASEC. The acquired enhancements in joint space are 17%, 62%, and 51% involving
ITAEJ, ITASEJ, and IASEJ , respectively. The obtained results using these criteria confirm
that the proposed RISE feedforward controller far exceeds the standard RISE controller as a
result of the integration of our proposed IDM as a feedforward part in the control scheme
together with the RISE feedback controller.

5.4 Experimental results of control solution 2

To present the experimental results of control solution 2, Standard RISE and RISE with
nominal feedforward controllers are also tested with the same trajectory and execution speeds
to view in more detail the impact of the RISE feedforward with adaptive feedback gains in
the real-time experiments. The three controllers’ results are compared with each other in
graphs and performance tables to see their effectiveness in a machining task and with different
forward speed changes. The name of the proposed controllers is simplified for presenting the
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experimental results in graphs and tables as follows: RISE FW represents RISE control with
nominal feedforward, and RISE FW AG is RISE feedforward with adaptive gains.

5.4.1 Trajectory evaluation at low speed

The comparison of the tracking errors in joint space with a forward speed F= 1200 mm/min
are depicted in Figure 5.13. One can see from the graph for motor 1 that the tracking error in
parts is smaller with the RISE controller and in other parts with the RISE FW AG controller.
For the graphs of motors 2 and 3, the tracking error is quite similar between the RISE FW
and RISE FW AG controllers; however, several overshoots are observed in the standard
RISE controller’s tracking error. In the graph for motor 4, it can be seen quite well that
the tracking error of RISE FW AG is the closest to zero, then that of RISE FW and finally
the standard RISE. The variations observed in the behavior of the tracking errors of each
of the motors may be due to the fact that although the dynamic parameters of each set of
links were considered the same, in reality, there are slight variations in mass between them.
Figure 5.14 is a zoom of the previous figure in the interval of 75 and 80 seconds to improve
the appreciation of the different curves for F= 1200 mm/min. The evolution of the adaptive
gains Ks and Λ2 are shown in Figures 5.15 and 5.16, respectively. It can be seen that the
minimum values of these gains are those previously established for K2 and K3. The maximum
peak values that Ks and Λ2 reach are 36 and 4, respectively. The torques generated from
the RISE FW AG controller are illustrated in Figure 5.17. It can be seen that the values for
motors 1 and 2 range between 100 and 30 Nm, while for motors 3 and 4, the values range
from -100 to -350 Nm. These variations are due to the horizontal orientation of the SPIDER4
kinematic chains since gravity’s acceleration affects the lower linkages (kinematic chains 1 and
2) differently than the upper linkages (kinematic chains 3 and 4). To give a concrete result of
the controllers’ performance under this operating condition, one must resort to the use of the
RMSEs equations (5.1) and (5.2) such results are presented in Tables 5.5 and 5.6 for joint
and Cartesian space, respectively. With the data provided in such Tables, one can compute
the resulting improvement of the RISE FW AG with respect to RISE and RISE FW where
the results are registered in Table 5.7. We can see that the improvement obtained from the
RISE FW AG controller is 24% in the joint space, and 19% in the Cartesian space compare
it to the standard RISE controller. Comparing RISE FW AG with respect to RISE FW,
we get improvements of 17% and 15% expressed for joint and Cartesian space. Considering
these results, we can note a significant enhancement in the system performance when RISE
FW AG is used to regulate the motion of SPIDER4. The resulting machining piece of this
experimentation using control solution 2 is presented in Figure 5.28a.

5.4.2 Trajectory evaluation at medium speed

Increasing the Forward speed F from 1200 to 2400 mm/min, the following results are obtained.
In the graphs presented in Figure 5.18, it can be seen in the four graphs that the tracking
error of the RISE FW AG controller is the one that remains closest to zero in most of the
execution of the trajectory, then is the tracking error obtained by the RISE FW. However, the
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Figure 5.13: Evolution of tracking errors in joint space respect to time for F=1200 mm/min
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Figure 5.14: Evolution of tracking errors in joint space respect to time for F=1200 mm/min
zoomed view



5.4. EXPERIMENTAL RESULTS OF CONTROL SOLUTION 2 115

0 50 100 150

K
s

1

32

33

34

35

36

0 50 100 150

K
s

2

32

33

34

35

36

Time [Sec]
0 50 100 150

K
s

3

32

33

34

35

36

Time [Sec]
0 50 100 150

K
s

4

32

33

34

35

36

Figure 5.15: Evolution of Ks gains respect to time for F=1200 mm/min
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Figure 5.16: Evolution of Λ gains respect to time for F=1200 mm/min
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Figure 5.17: Evolution of the control inputs generated by RISE FF AG controller respect to
time for F=1200 mm/min

performance of the standard RISE controller was clearly impaired by the increased forward
speed. This affirmation can be better stated in Figure 5.19, where a zoon has been applied
between 35 and 40 seconds to have a better appreciation of the curves. Regarding the adaptive
gains, it can be seen in Figure 5.20 for Ks that its maximum peak values increased very little
compared to the previous case, it is seen that in some cases it almost reaches values of 37.
Moreover, looking at Figure 5.21, one can note that the behavior of Λ2 also is similar to
the previous case whose maximum values it reaches reach up to 5. The control signals are
presented in Figure 5.22, where it can be seen that when the forward speed increased, the
output torque also increased. We can see that the peak values of motors 1 and 2 are close to
400 Nm, whereas motors 3 and 4 are close to -400 Nm. Making use of the RMSEs formulas,
we can confirm the superiority of RISE FW AG in this operative condition concerning the
other two controllers. The RMSEs results are presented in the third column of Tables 5.5
and 5.6 for Cartesian and joint space, respectively. The obtained improvements with respect
to Standard RISE are 21% in the task space and 25 % in joint space. Comparing to RISE
FW, the acquired enhancements are 16% and 18% for Cartesian and joint space. Although
the absolute value of the three controllers’ tracking errors increase as the forward speed
increased, the tracking error of the RISE FW AG controller was hardly affected compared
to the other two. Hence the percentage of improvements in control solution 2 has increased
considerably compared to the previous case. The machining result of the RISE FW AG
controller experimentation at this forward speed is shown in Figure 5.28b. It is appreciated
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Figure 5.18: Evolution of tracking errors in joint space respect to time for F=2400 mm/min

that the machining quality was low due to the fact that the spindle was positioned for less
time in the material, and its turning speed did not increase as the forward speed increased.

5.4.3 Trajectory evaluation at high speed

The forward speed used for this test is really not suitable for machining tasks because the
quality of the resulting product is quite poor, as we can see in Figure 5.28. Nevertheless,
this experiment was proposed to see how the performance of the controllers is affected at
such a high forward speed. The evolution of the tracking errors in joint space is presented in
Figure 5.23. In comparison to the graphs of the evolution of the tracking errors shown for
the previous cases, for this case, it can be seen that the performance of the standard RISE
controller is seriously impaired, whereas that the performance of the other two controllers
is quite similar. Considering the zoomed view of the described tracking errors in Figure
5.24, it can be distinguished as a slight improvement of the RISE FW AG over the RISE
FW controller. So it can be intuited that the improvement of the control solution 2 is not
much under this operating condition. Nevertheless, It can be seen in Figures 5.25 and 5.26
that the maximum values of the adaptive gains increased considerably. One can see that Ks
almost reaches values of 45, and some values of Λ2 are greater than 10. In Figure 5.27, it
can be seen that the value of the output torques increased a lot compared to the previous
experiments. For motors 1 and 2, these values range from -200 to 600Nm, and for motors 3 and
4, the peak values range from -600 to 200 Nm. As in the previous cases, the RMSEs for this
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Figure 5.19: Evolution of tracking errors in joint space respect to time for F=2400 mm/min
zoomed view
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Figure 5.20: Evolution of Ks gains respect to time for F=2400 mm/min
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Figure 5.21: Evolution of Λ gains respect to time for F=2400 mm/min
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Figure 5.22: Evolution of the control inputs generated by RISE FF AG controller respect to
time for F=2400 mm/min
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Figure 5.23: Evolution of tracking errors in joint space respect to time for F=24000 mm/min

Table 5.5: Controllers performance evaluation using RMSE for joint space tracking errors
(Deg)

Controller Forward speed (F)
1200 mm/min 2400 mm/min 24000 mm/min

RISE 0.0592 0.0618 0.1796
RISE FF 0.0546 0.0566 0.1051
RISE FF AG 0.0449 0.0461 0.1007

experimentation are registered the Tables 5.5, and 5.6 and the corresponding improvements
are in Table 5.7. With F=24000 mm/min, the improvement with respect to the standard
RISE is 45 %. However, with respect to the RISE FW controller, the improvement was
minimal, only 1.47%, which implies that at high speeds, the performance of the RISE FW
AG controller is practically the same as the RISE FW.

5.5 Conclusion

In this chapter, the experimental results related to SPIDER4 RA-PKM were presented. Firstly,
a general overview of the experimental setup was detailed, including a brief description of
CNC commands for the trajectory generation on SPIDER4. Two control solutions were proved
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Figure 5.24: Evolution of tracking errors in joint space respect to time for F=24000 mm/min
zoomed view
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(a) F=1200 (b) F=2400

(c) F=24000

Figure 5.28: Machining results using RISE FF AF with different forward speeds

Table 5.6: Controllers performance evaluation using RMSE for Cartesian space tracking errors
(cm)

Controller Forward speed (F)
1200 mm/min 2400 mm/min 24000 mm/min

RISE 0.0383 0.0405 0.1425
RISE FW 0.0367 0.0380 0.0794
RISE FW AG 0.0309 0.0319 0.0782
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Table 5.7: Enhancement of the proposed RISE FW AG respect to standard RISE and RISE
FW using the RMSE for tracking errors in Cartesian and joint space

Cartesian Space Joint Space
Forward speed RISE RISE FW RISE RISE FW

Low 19.27 % 15.73 % 24.155 % 17.75 %
Medium 21.36 % 16.06 % 25.40 % 18.55 %
High 45.12 % 1.47 % 43.93 % 4.18 %

on SPIDER4 under two scenarios. The fist controller tested on SPIDER4 was a RISE control
with a nominal feedforward term. This controller aimed mainly to validate the veracity of the
computed IDM of SPIDER4 since the IDM was used in this controller as the feedforward
term. A free-motion trajectory was used in this experiment, and the obtained performance of
the control solution 1 was 23% higher than that of the standard RISE controller. The second
controller was a RISE feedforward control with adaptive feedback gains whose purpose is to
be an alternative to force control in view that sometimes robotic systems do not have sensors
to measure contact forces. Machining is a task were contact forces are involved. Therefore,
it is necessary to implement a control scheme to counteract them. The adaptive gains are
intended when the error signal increases due to contact with the material; These will increase
their value to compensate for this error. By reaching a remarkably small error, the gains will
adjust their value optimally. The control solution 2 was validated to control solution 1 and
standard RISE in a machining scenario. This scenario was performed with low, medium, and
high forward speed. In all speed executions, the proposed control solution 2 outperformed
the RISE feedforward and standard RISE. However, at high speed, the performance of the
RISE feedforward with adaptive gains deteriorates considerably, having a behavior similar to
RISE feedforward. Notwithstanding, the executed maximum speed in these experiments is
not suitable for a real machining task so that the intention of using that speed was to know
the limitations of the proposed control schemes precisely. According to the results, we can
say that the control solution 2 obtained its best performance at medium speed.
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C h a p t e r

Simulation and Experimental
Results on Delta PKM

In this chapter, the experimental and simulation result on a Delta PKM are presented. A
classical PID controller is validated via real-time experiments on the Delta PKM prototype of
the Polytechnic University of Tuancingo. Moreover, the simulation results concerning the
control solution 3 detailed in chapter 4 are provided here. The computed kinematic and
dynamic parameters of the Delta prototype were used to carry out the numerical simulations.
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6.1 Introduction

The Delta robot is a revolutionary PKM whose integration into the industry has been due
to its advantages over other types of manipulators in terms of potential accuracy and high
operational speed. For such advantages mentioned in previous chapters about the Delta
robot architecture, the Polytechnic University of Tulancingo is currently developing a classic
prototype with 3-DOF. The prototype aims to be an experimental platform for the validation
of advanced nonlinear control techniques. However, there are still details in the electrical
system and the mechanical structure, so the prototype is not entirely ready to experiment
with complex control schemes. Until now, it has been possible to implement only a PID
controller, so the results that have so far been obtained experimentally will be presented in

125
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this chapter. The control solution 3 was specially designed to be implemented in robots that
perform Pick and Place tasks such as the Delta robot. Nevertheless, due to the prototype is
not already finished, the RISE controller with adaptive feedforward compensation-based-on
B-spline neural networks was tested only via numerical simulations using the Delta’s computed
kinematic and dynamic parameters prototype. With that said, let us start with the description
of the experimental setup of the Delta PKM prototype.

6.2 Description of the Experimental Setup, and Imple-
mentation Issues

6.2.1 Description of experimental Setup

The Delta PKM prototype of the Polytechnic University of Tulancingo is still in the develop-
ment process. The experimental setup of the prototype is depicted in Figure 6.1. In order to
generate the motion, the robot uses three Baldor MTE-3363-BLBCN DC servomotors, where
each one can provide 8.5 Nm as maximum peak torque each one. The servomotors include an
incremental optical encoder giving 1000 lines per revolution. All the functionalities of the
prototype, including kinematic algorithms, control law, a GUI, are contained in a project of
LabVIEW of National Instruments where each function of the project is programmed in a
Virtual Instrument (VI). The project is transferred to the embedded system cRIO-9014, also
form National Instruments. This target is in charge of acquiring and sending the data to
control the robot. To this end, cRIO is equipped with the following modules:

• NI 9505, which is a controller for brushed motors.

• NI 9264, this is a module of analog outputs with 16 channels. The output voltage range
is ± 10V with a 16-bit resolution.

• NI 9403, this is a 5V/TTL digital I/O module with 32 channels.

• NI 9219, this is a universal analog input with four channels.

The N9505 is used as a 5V power supply for the three motor encoders’, and the NI 9403
module collects the provided signals by the encoders. Figure 6.2 illustrates the connection
diagram with the NI modules for data acquisition. Since the servo motor drivers are not
available, a power stage was build using a three Lambda GEN 50-30 power supply to supply
each servomotor and three H-bridges’ composed by optocouplers and IGBTs to control them.
The control scheme sends control signals that go out through the NI 9264 module. These
signals are amplified by the Lambda source to enter the servomotors and produce the motion.
In order to reverse the rotation of the servomotors, the NI module is used, which, based
on certain conditions established in the programming code, it sends a signal to activate the
servomotor clockwise or another signal to activate it counterclockwise. Figure 6.3 shows the
power stage of one of the servomotors. It is worth to mention that the connection diagram of
Figure 6.3 is similar for the other two servomotors but using different connection pins.
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Figure 6.1: View of Delta PKM prototype of Polytechnic University of Tulancingo
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Figure 6.2: Encoders connection diagram
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Figure 6.3: Power stage diagram of one servomotor of Delta PKM prototype of Polytechnic
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6.2.2 Trajectory Generation for Real-time Experiments

For Real-time experiments, the algorithm for the Cartesian space trajectories was programmed
in a VI of the LabVIEW project. Such trajectories intended to create a path for P&P
applications. The desired path was programmed using a fifth-order polynomial algorithm
described by the following equations [Natal et al., 2016]:

xf = xi + r(t)∆x, for 0 ≤ t ≤ tf (6.1)

r(t) = 10
(
t

tf

)3

− 15
(
t

tf

)4

+ 6
(
t

tf

)5

(6.2)

Where xi is the initial position, xf is the final position; both are given in Cartesian space,
r(t) is the trajectory function of two points, ∆x = xf − xi, and tf is the duration of each
displacement of the trajectories, in this case, tf = 0.5 sec. Employing (6.1) and (6.2), the
following sequence of points expressed in meters are proposed:

1. From (-0.1,-0.1,-0.6) to (-0.1,0,-0.55)

2. From (-0.1,0,-0.55) to (-0.1,0.1,-0.6)

3. From (-0.1,0.1,-0.6) to (0,0.1,-0.55)

4. From (0,0.1,-0.55) to (0.1,0.1,-0.6)

5. From (0.1,0.1,-0.6) to (0.1,0,-0.55)
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Figure 6.4: Isometric View of trajectory used for Real-time experiments

6. From (0.1,0,-0.55) to (0.1,-0.1,-0.6)

7. From (0.1,-0.1,-0.6) to (0,-0.1,-0.55)

8. From (0,-0.1,-0.55) to (-0.1,-0.1,-0.6)

The generated trajectory for the previous desired points is presented in Figure 6.4, as long
as the evolution of the desired trajectories xd, yd, and zd with respect to time are depicted
in Figure 6.5 where the time units are milliseconds for time and millimeters for Cartesian
displacement.

6.2.3 Trajectory Generation for Numerical Simulations

The interpolation algorithm for the trajectory generation, in this case, is the same as presented
in equations (6.1) and (6.2) to generate another P&P trajectory which is used in the evaluation
of the control solution 3. The P&P trajectory is evaluated under two scenarios. Moreover, a
third scenario consisting of changes in the execution speed is proposed to see the effectiveness
of the control solution 3 under this operative condition. The trajectory for the third scenario
is a spiral path whose equations are different, as presented previously.

Trajectory for Scenarios 1 and 2

The trajectory proposed for both scenarios corresponds to a P&P path with more positions
as presented for real-time experiments. The trajectory is generated using the polynomial
interpolation of fifth-order, being the same equations presented in (6.1) and (6.2). The
obtained trajectory used for this case study is represented in Cartesian space by Figure 6.6,
illustrating the two scenarios. The left illustration represents the tracking trajectory for the
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Figure 6.5: Desired trajectories with respect to time generated in LabVIEW

first scenario executed by the Delta PKM without any payload, while in the second scenario,
the robot moves masses of 1 Kg along trajectory sections. The sections of the trajectory
where the Delta robot’s traveling plate moves a mass are depicted with a dotted line in red
color, whereas the solid lines in blue are the sections of the trajectory where the Delta PKM
is moving without any payload. The evolution of the trajectories with respect to time is given
in Figure 6.7. The sequence of movements for this P&P trajectory is presented as follows in
the (x,y) plane.

1. Start-Pick: from (-0.2,-0.1) to (-0.1,0.1).

2. Pick-Place: from (-0.1,0.1) to (0,-0.1).

3. Place-Pick: from (0,-0.1) to (0.1,0.1).

4. Pick-Place: from (0.1,0.1) to (0.2,-0.1).

5. Place-Pick: from (0.2,-0.1) to (0.2,0.1).

6. Pick-Place: from (0.2,0.1) to (-0.2,0.1).

7. Place-Pick: from (-0.2,0.1) to (-0.2,-0.1).

8. Pick-Place: from (-0.2,-0.1) to (0.2,-0.1).

The previous movement sequences are performed in 0.3 seconds for both scenarios.
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(a) Desired trajectory in Cartesian space for scenario 1 case study
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(b) Desired trajectory in Cartesian space for scenario 2 case study
1

Figure 6.6: Desired 3D trajectory for a P&P Task. The lines in red color corresponds to
trajectory portions where the Delta PKM is moving with a payload and the blue lines are the
corresponding portions without payload
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Figure 6.7: Evolution of the desired trajectories in Cartesian space versus time for scenarios 1
and 2

Trajectory For Scenario 3

The desired trajectory for this case study is a spiral path on the plane (x,y) (see Figure 6.8).
The proposed three scenarios for this case study are subject to changes in the speed execution
of the trajectory (low, medium and high). The following equations are used to generate the
desired spiral path:

xd =r cos(2πft)
yd =r sin(2πft)
zd =− 0.6

(6.3)

r = 0.04ft (6.4)

where r denotes the separation distance between circular turns and f is the frequency of the
circular movements. The speed changes are achieved by modifying the value of f , we define:

• f = 0.5Hz for low speed

• f = 1.75Hz for medium speed

• f = 3.5Hz for high speed

The initial and final positions of the spiral trajectory given in Cartesian coordinates are
(0,0,-0.6) and (0,0.2,-0.6).
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Figure 6.8: Desired spiral trajectory in the plane (x,y) for the Scenario 3

6.2.4 Performance evaluation criteria

Before proceeding to show the graphs of the experimental and simulation results of Delta
PKM. Let us to formulate the RMSE formulas to have concrete data about the performance
of the controllers. The following equations established the RMSE in Cartesian and joint space
form respectively:

RMSEC =

√√√√ 1
N

N∑
k=1

(e2
x(k) + e2

y(k) + e2
z(k)) (6.5)

RMSEJ =

√√√√ 1
N

N∑
k=1

(e2
11(k) + e2

12(k) + e2
13(k) (6.6)

where ex, ey, ez denote the Cartesian position tracking error of the traveling plate along the
x, y, z axes, while e11, e12, e13 are the different joint space tracking errors. Moreover, N is the
number of samples and k the current sample.

6.2.5 Tuning gains procedure

Given the significant number of tuning parameters for the control solution 3 and the amount
of uncertainties present in the prototype, which is not fully completed, the controller’s gains
for real-time experiments and those of the controllers implemented via numerical simulations
are adjusted by trial and error method.
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Table 6.1: Controller parameters used in the Delta PKM
PID RISE/RISE FW RISE BSNN

Kp=50 Λ1=110 Λ1=110
Kd=2.2 Λ2=8 Λ2=8
Ki=8.3 Ks=60 Ks=60

β=3 β=3
γ=0.53

Tuning gains for PID controller

The gains for the real-time experiments using a PID controller were sated in the following
form: First, all gains were initialized in zero, then the proportional gain was increased until
the robot began to move and whose movements oscillated around the proposed trajectory. In
order to attenuate the generated oscillations, the derivative gain was incremented little by
little until the overshoots were considerably reduced and taking care not to generate excessive
noise. Finally, the integral gain was augmented until reaching values closer to the reference
path. Table 6.1 present the gains’ values of the PID controller in the first column.

Tuning gains for RISE-based controllers

For the numerical simulations, a standard RISE and a RISE feedforward are evaluated together
with the control solution 3. The common denominator of the three controllers is the RISE
feedback part. Therefore, the feedback gains’ values will be the same for these controllers. To
adjust their values first, one chooses a sufficiently large value for Ks and Λ1, and the gains Λ2
and β are initialized in zero. Then, the program is executed to compute the RMSE in the
joint space. With the obtained result, the Λ2 and Beta values are increased until reaching
the smallest possible RMSE at each simulation. In the case of β gain, it must be adjusted in
such a way that there is not the least possible chattering in the control signals. For RISE
with adaptive compensation, based-on BSNN (RISE BSNN), the learning rate can take a
value between zero and one. And that value is adjusted based on the desired tracking speed.
If high speeds are demanded, it is preferable to use an intermediate value because if a high
gamma value is selected, there will be times when the neural network will tend to produce
indeterminacies. The parameters of RISE based controllers used in the numerical simulations,
are summarized in Table 6.1 columns 2 and 3.

6.3 Experimental Results with a PID Controller

Since the Delta PKM of the Polytechnic University of Tulancingo is still in development,
there exist some issues are related to the mechanism and the electronic stage. For instance, a
planetary gearhead must integrate into each servomotor to increase the output torque and the
output shaft rigidity. Because of every time that the Delta PKM moves, there are multiple
oscillations of their kinematic chains due to the servomotors’ lack of force. For these reasons,
the precision that the robot can achieve is very low. This experimentation aims not to make
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Figure 6.9: Tracking trajectory comparison in Cartesian and joint Space with respect to time

a performance comparison with other controllers as has been done in the previous chapter,
but to show the progress that has been achieved in the development of the prototype. With
this in mind, let us remember the equation of the PID controller in joint space:

Γ(t) = Kpeq(t) + Kdėq(t) + Ki

∫ t

0
eq(τ)dτ (6.7)

Where Kp, Kd, Ki ∈ Rn×n correspond to the proportional, derivative and integral gain
matrices. The tracking error in joint space eq ∈ Rn is defined as eq = qd − q. The tracking
trajectory graphs for Cartesian and joint space are presented in Figure 6.9. One can see that
the robot is apparently approaching the desired references. However, looking at the graphs of
the tracking errors in Figure 6.10, one can see that these errors are quite large. For the joint
space, the error signals can reach 5 degrees, whereas that for the Cartesian space, there are
tracking errors that reach up to 30 mm. So it is not recommended at this time to perform
an operational task. Figure 6.11 shows the control voltage generated by the PID controller.
Although the control signal can be expressed as a function of torque by means of the following
relationship:

Γ(t) = Ka

Ra

V(t) (6.8)

In which,Ka is the torque constant and Ra is the armature resistance of each of the servomotors.
These constants can be found in the datasheet of the actuators.
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Figure 6.10: Tracking error evolution in Cartesian and joint space with respect to time

Figure 6.11: Controller signals
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6.4 Simulation results of control solution 3

In this section, the results obtained by numerical simulations with the RISE BSNN are
presented. The obtained performance of the control solution 3 is compared to a Standard
RISE control under three different scenarios described previously in subsection 6.2.3. Moreover,
a RISE FW controller is used to validate the obtained IDM approximation by the BSNN
feedforward term. Both feedforward terms are compared in graphs to see the estimation given
by AMNN.

6.4.1 Scenario 1: Nominal case

The tracking errors for the P&P trajectory without moving payload are presented in Figure
6.12 for both Cartesian and joint space. As it can be noted, the tracking errors of RISE BSNN
are noticeably smaller than those of Standard RISE control due to the BSNN compensation
terms reducing the effect of nonlinearities, resulting in better tracking performance. Figure
6.13 depicts the generated torques by the Standard RISE and our proposed RISE BSNN in
the first column graphs, whereas the control signals that form our proposed controller (i.e.,
RISE contribution and BSNN contribution) are in the second column. It is noteworthy that
the BSNNs outputs’ behavior is very similar to the torques produced for both control schemes
due to the accurate approximation of the inverse dynamic model of Delta PKM computed by
the BSNNs. Moreover, as can be seen in the same Figure, the BSNN control term produces
most of the torque required to reach the desired position this is due to its good approximation
of the IDM for the Delta robot and, on the other hand, the term corresponding to the RISE
control produces the extra torque needed to achieve the desired position accurately. The
RMSEs’ for this scenario 1 are registered in Table 6.4.3 with the improvements of RISE BSNN
over standard RISE. One can appreciate in the Table that the Cartesian space’s improvement
is over 80% and 79% in the joint space, which represents an improvement in performance
more than acceptable. Finally, in Figure 6.14, the evolution of the BSNNs’ adaptive weighs for
scenario 1 is presented. Three sets of eight adaptive weighs are used to estimate the dynamic
behavior of each kinematic chain of the Delta PKM. In the graphs, it can be appreciated
that the initial value of all weights is zero, and as the trajectories are executed, not all the
weights evolve together; this is because of the BSNNs update only the associate weights to
the current input values of the BSNNs.

6.4.2 Scenario 2: Changes in the payload

By adding a mass of one kilogram to certain parts of the P&P trajectory, as shown in Figure
6.6b, the following results are obtained. The tracking errors for the second scenario are
represented in the graphs of Figure 6.15. It can be appreciated that the amplitude of tracking
errors has increased for the two controllers as a consequence of the addition of the moving
mass. However, the RISE BSNN control law’s performance is still widely better than the
Standard RISE controller. The produced control signals of both control schemes are provided
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Figure 6.12: Evolution of the tracking errors versus time in Cartesian and joint space for
scenario 1
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Figure 6.13: Evolution of the control signals generated by RISE and RISE BSNN controllers
(first column), and the control contributions of RISE BSNN (second column) versus time for
scenario 1
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Figure 6.14: Evolution of the BSNNs’ weights of scenario 1

in the first column of Figure 6.16, and the torques’ contributions of the RISE term and the
BSNN term of control solution 3 are in the second column. In all graphs, it can be noted that
the curves have doubled compared to control signals for scenario 1, owing to the controllers
requiring more energy to move the payload from one point to another. To quantify the
obtained controllers’ performance for this scenario, we compute the RMSEs using the tracking
errors in Cartesian and joint space. The results are presented in Table 6.4.3. One can see that
even though the RMSE values of the two controllers increased. The RISE BSNN controller
improvement over the standard RISE remains above 80% for Cartesian space and 79% for
joint space. Lastly, the evolution of the BSNNs’ adaptive weighs is presented in Figure 6.17.
It can be seen that, as the previous scenario, all the values start at zero, and only some of
the weights change their value along the trajectory. The main change in this simulation with
respect to the previous one is the amplitude of these weights since they reach values greater
than those presented in Figure 6.14.

6.4.3 Scenario 3: Changes in the speed

This scenario’s objective is to know how much the changes in speed affect the controllers’
performance. The spiral trajectory used for this scenario is expected to be completed in 14.8 s,
2.85 s, and 1.42 s according to the speed execution. The tracking errors in Cartesian and Joint
space are presented in Figures 6.18, 6.19, and 6.20 for the speeds executions (low, medium,
and high). As it can be noticed, as the speed is increasing, the overshoots amplitude on the
tracking error signals also increases. Nevertheless, the proposed RISE BSNN controller’s
tracking errors always remain lower than those produced by the standard RISE controller.
The produced torques of both controllers are presented the first column of Figures 6.21, 6.22,
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Figure 6.15: Evolution of the tracking errors versus time in Cartesian and joint scenario 2
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Figure 6.16: Evolution of the control signals generated by RISE and RISE BSNN controllers
(first column), and the control contributions of RISE BSNN (second column) versus time
scenario 2
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Figure 6.17: Evolution of the BSNNs’ weights of scenario 2

Table 6.2: Controllers performance evaluation for scenario 1 and 2
Scenario Controller RMSEC[cm] RMSEJ[Deg]

RISE 0.0285 0.0491
Scenario 1 RISE BSNN 0.0055 0.0102

Enhancement 80.6% 79.1%
RISE 0.0571 0.0929

Scenario 2 RISE BSNN 0.0109 0.0194
Enhancement 80.9% 79.1%

and 6.23 and the contributions of the RISE part and the BSNN of the control solution 3 are
in the second column of the same figures. It is possible to see that when the speed increases,
also the energy provide by the computed control signals increase. Moreover, the control
actions of the BSNNs contribute in a more significant proportion than the RISE contribution.
Figure 6.24 presents the weighs evolution respect to time for the three execution speeds
(low, medium, and high). Similar as scenarios 1 and 2, all the weights values are initialized
in zero as can be appreciate in the six graphs. In low speed, we can see that only four
weights are changed along the trajectories owing to the input values of the desired trajectories
stay in the range values of only one basis function; unlike in high speed where all weights
are in involved since the desired trajectories reach the maximum limits of the knot-points
distribution. Table 6.4.3 presents the comparison of different RMSEs for the three speeds
reinforcing the advantages of our proposed control solution. In all scenarios of this case study,
the improvement of our controller compared to Standard RISE is between 60% and 80%. To
have a better comprehension of how great the deterioration of the control schemes as the
speed increases is, the RMSE is plotted in Figure 6.25.
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Figure 6.18: Evolution of the tracking errors versus time in Cartesian and joint space
corresponding to low speed for scenario 3

Figure 6.19: Evolution of the tracking errors versus time in Cartesian and joint space
corresponding to medium speed for scenario 3
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Figure 6.20: Evolution of the tracking errors versus time in Cartesian and joint space
corresponding to high speed for scenario 3
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Figure 6.21: Evolution of the control signals generated by RISE and RISE BSNN controllers
(first column), and the control contributions of RISE BSNN (second column) versus time that
corresponds to low speed scenario 3
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Figure 6.22: Evolution of the control signals generated by RISE and RISE BSNN controllers
(first column), and the control contributions of RISE BSNN (second column) versus time that
corresponds to medium speed scenario 3

Table 6.3: Controllers performance evaluation for scenario 3
Speed Controller RMSEC[cm] RMSEJ[Deg]

RISE 4.622× 10−4 0.0010
Low RISE BSNN 1.314× 10−4 2.670× 10−4

Enhancement 71.5% 73.6%
RISE 0.0262 0.0362

Medium RISE BSNN 0.0052 0.0073
Enhancement 80.0% 79.8%
RISE 0.1413 0.1947

High RISE BSNN 0.0434 0.0606
Enhancement 69.8% 68.5%
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Figure 6.23: Evolution of the control signals generated by RISE and RISE BSNN controllers
(first column), and the control contributions of RISE BSNN (second column) versus time that
corresponds to medium high scenario 3
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Figure 6.24: Evolution of the BSNNs’ weights for scenario 3 when the Delta PKM is subjected
to changes in the speed
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(a) RMSE Cartesian Space (b) RMSE Joint Space

Figure 6.25: Degradation graphs of RMSE at different speeds for Cartesian and joint space in
scenario 3

6.4.4 Comparison of BSNN compensation against nominal feed-
forward

In the previous case studies, the proposed RISE with BSNN compensation was evaluated to
standard RISE control, and the results obtained were notably superior. However, as it was
mentioned before, the BSNN compensation term aims to emulate the Nominal feedforward
term. Therefore, in this subsection, our proposed control solution is compared to a RISE
feedforward controller to validate the approximation of the dynamics given by the BSNN.
The case study 1, including the two scenarios, is considered for this validation. Figure 6.26
depicts the tracking error in the joint space of the RISE feedforward and RISE BSNN and
the components compensation of both controllers when no payload is moving. It can be
appreciated that the tracking error of the RISE feedforward is prominently better than the
RISE BSNN due to the evaluated dynamic parameters in the feedforward part are entirely
known, unlike the RISE BSNN, where the dynamic behavior of the Delta PKM is on-line
estimated. However, note that the produced compensation terms of the BSNN are similar
to those produced by the nominal feedforward even without any information on the system
dynamics. The obtained RMSEq is 0.0045 for the RISE feedforward and 0.0102 for the RISE
BSNN, the first controller outcomes the second one in 56.69% for this scenario. Nevertheless,
for the second scenario where a mass of 1 kg is moved in some portions of the trajectory, the
performance of the RISE BSNN is better than the RISE feedforward, due to RISE BSNN can
compensate for the parametric uncertainty produced by the changes in the payload along the
trajectory, unlike the RISE feedforward, where the dynamic parameters are not updated as
can be demonstrated on Figure 6.27. The resulting RMSEq for the second scenario is 0.0494
for RISE feedforward and 0.0194 for RISE BSNN, yielding an improvement of 60% of RISE
BSNN over the RISE feedforward. With the curves provided in the second column of Figures
6.26 and 6.27, one can conclude that the dynamic approximation provided by the BSNNs is
quite good.



6.4. SIMULATION RESULTS OF CONTROL SOLUTION 3 147

Figure 6.26: Performance comparison between RISE feedforward and RISE BSNN scenario 1
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Figure 6.27: Performance comparison between RISE feedforward and RISE BSNN scenario 2
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6.5 Conclusion
In this chapter, the experimental and simulation results carried out on the Delta PKM were
presented. Since the Delta PKM prototype of the Polytechnic University of Tulancingo is
still in development, there are many issues related to the mechanism and the electronic stage.
Therefore, it is not suitable for the prototype to experiment with nonlinear complex control
techniques. However, to demonstrate the progress in the prototype development, a PID
controller was tested on a kind of P&P trajectory. The chapter also presents the numerical
simulation results related to the RISE controller with adaptive feedback compensation based-
on B-spline neural networks. This controller was tested under three scenarios: nominal case,
changes in the payload, and changes in the speed. The performance of this controller was
validated against the standard RISE control showing a remarkable superiority in all aspects.
Moreover, to confirm the dynamic model approximation obtained by the BSNN, a RISE
feedforward control was tested together with the control solution 3 under scenarios 1 and
2. The obtained curves of the BSNN term and the nominal feedforward were compared in
graphs where it was appreciated that the BSNNs make a fairly good approximation of the
robot’s dynamics.



General Conclusion

The objectives of this thesis have been mainly two which are intertwined with each other.
The first was to design a dynamic model for the new machining platform called SPIDER4,
and the second was to propose and validate different control techniques that help improve
the performance of parallel robots in different operating environments such as handling and
machining tasks. The real-time experiments and simulation results corroborated the new
control proposals’ effectiveness against speed changes, sudden changes in payload, and contact
forces.

Resume of the work
It was previously mentioned that the final performance of a parallel robot is a function of
various factors among themselves, such as mechanical design, mathematical modeling, and
the control scheme. All these factors must be well designed in order to get the most out of
the closed-loop architecture of PKMs. The thesis focused on the context of parallel robot
control. As described in the first chapter, its control involves many challenges, such as highly
nonlinear dynamics, the presence of parametric and non-parametric uncertainties, and in
some cases, redundantly actuation. Therefore, the controllers that must be implemented must
guarantee good precision in the task that the manipulator is developing despite the problems
mentioned above. The contributions of the thesis can be summarized as follows:

1. The proposal of the kinematic and dynamic models for the SPIDER4 platform, which can
be said to be a hybrid architecture robot formed by the parallel architecture positioning
device which represents most of the robot and the wrist, which is a series type mechanism
in charge of orienting the robot’s cutting spindle. The IKM of the parallel device is
an adaptation of the 3-DOF Delta PKM, while the IKM of the wrist was obtained
by employing transformation matrices as in serial robots. The FKM of the parallel
mechanism was obtained through a virtual sphere intercession algorithm, while that of
the wrist was calculated using the same transformation matrices used for its IKM. The
IDM of the SPIDER4 parallel positioning device was calculated based on the method
developed in AA for robots with delta-type architecture. The main modification lies in
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the formulation of the acceleration of gravity in the kinematic chains of SPIDER4 since
these are oriented horizontally instead of vertically, which produces a direct effect on
the output torque of the motors. The dynamic model of the wrist was calculated using
the Euler-Lagrange formulation. In the end, both models were combined to express the
total SPIDER4 IDM in the joint space. However, for the experimentation of control
techniques, only the IDM of the parallel positioning device was considered, since due
to software problems, it was not possible to modify the wrist control law. Finally, the
kinematic and dynamic parameters of the robot were obtained through datasheets and
Solidworks calculations.

2. A RISE controller with nominal feedforward was proposed to validate the IDM of the
SPIDER4 parallel positioning device via real-time experiments. It is well known that
the total or partial integration of the IDM in a control scheme markedly improves the
system’s performance to be controlled. However, a bad approximation of the model,
together with an imperfect estimation of the dynamic parameters, can degrade the
system’s performance instead of improving it. The proposed RISE feedforward controller
was tested together with the standard RISE control in order to see the improvement
produced by incorporating the dynamic model proposed as the lead compensation term.
The experimental results showed improvements of over 23%, demonstrating the efficacy
of the proposed IDM.

3. SPIDER4 RA-PKM is designed to perform machining tasks such as drilling or milling in
resin materials. Due to the existence of contact forces, some CNC machines incorporate
force controllers to counteract these forces. In order to implement a force controller, the
robot must have sensors that measure the contact force or the current consumed by the
robot’s actuators. However, SPIDER4 does not have this type of sensor to implement a
force control loop. So it was proposed to modify the RISE feedforward controller by
replacing fixed feedback gains with adaptive gains. The purpose of these gains is that
when the tracking errors grow noticeably due to contact forces, the gains automatically
increase their values to counteract such tracking errors. By reducing the tracking
error, the gains will automatically adjust to the most optimal value. The validation of
this control scheme was carried out through real-time experiments. The experiments
consisted of the machining of a piece of Styrofoam. The machining trajectory was
executed with different advanced speeds to see its impact on the SPIDER4’s performance.
The performance of the RISE feedforward controller with adaptive gains was compared
to that of the RISE feedforward and the standard RISE. The results showed a very
noticeable improvement respecting the other controllers when the machining task was
executed with F=1200 mm/min and F=2400 mm/min. However, when the speed was
exceeded at F=24000 mm/min, the performance obtained was slightly higher than
that of RISE feedforward. Therefore, it can be concluded that this control proposal
is suitable for machining tasks in soft materials as long as the forward speed is not
exceeded.

4. A RISE controller with feedforward compensation term based-on BSNN was proposed to
regulate the positioning of a 3-DOF Delta PKM performing P&P tasks. The objective
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of the BSNN is the estimation of the dynamics in real-time of the kinematic chains
of the robot and the mobile platform. This objective arises due to the fact that in
reality, some dynamic parameters and portions of the dynamic model are not precisely
known; in addition, the mass variations in the payload in PP operations represent an
additional uncertainty. Therefore, the use of ANN represents an attractive solution to
estimate the dynamic model even in the presence of parametric uncertainties, such as
the change in mass values. This control proposal was validated under three different
scenarios with numerical simulations because the prototype developed at the Polytechnic
University of Tulancingo has not yet been completed. The performance of this control
proposal was compared with that obtained through the standard RISE control. The
results obtained showed a remarkable improvement even with variations in the payload
and the speed execution. Regarding the under development Delta PKM prototype,
real-time experimental results of implementing a PID controller were presented. This
implementation intended only to show the achieved progress in the development of the
prototype.

Future works perspective
The work presented in research focused on two experimental platforms: the SPIDER4 robot
from LIRMM and the Delta PKM prototype from the Polytechnic University of Tulancingo.
Based on the results obtained in this work, the following future works can be formulated for
both platforms.

• Implementation of a force control loop for SPIDER4. To carry out this action,
it will be necessary to reconfigure the inputs of the X20 system to obtain data from the
current measurements of each actuator, and, in this way, the system will be ready for
the second control loop to be applied. The force control will provide greater robustness
to the position control, and it opens the possibility of working with slightly harder
materials.

• Experimentation of control schemes in Cartesian space for SPIDER4. It is
speculated that the implementation of control schemes in the workspace may have
better results than those implemented in the joint space because there are slight
inaccuracies when performing inverse kinematics calculations. To avoid that, SPIDER4
includes a measurement system that allows obtaining the nacelle’s real position without
performing inverse kinematics calculations. Therefore, the robot’s precision could be
further improved by implementing a control scheme of this type.

• Real-time implementation of the RISE BSNN controller on the Delta PKM
prototype. To carry out this action, the prototype must be completed, including the
improvement of the power stage and gearboxes’ addition to the servo motors. Once the
experimental platform has been completed, the obtained numerical simulation results of
the RISE BSNN controller can be verified via real-time experiments.
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Proof of lemma 1

This proof is implied in the stability analysis for the RISE control with nominal feedforward,
and RISE feedforward with adaptive feedback gains.
Establishing the integral with respect to time of (4.31), the following is obtained:

∫ t

0
L(τ)dτ =

∫ t

0
r(τ)(Nd(τ)−NFW (τ)− βsgn(e2(τ)))dτ (A.1)

Substituting (4.32) into (A.1) we get:

∫ t

0
L(τ)dτ =

∫ t

0
Λ2e2(τ)T (Nd(τ)−NFW (τ)− βsgn(e2(τ)))dτ +

∫ t

0

de2(τ)T
dt

Nd(τ)dτ

−
∫ t

0

de2(τ)T
dτ

NFW (τ)dτ −
∫ t

0

de2(τ)T
dτ

βsgn(e2(τ)))dτ
(A.2)

Using the integration by parts for the right-hand of equation (A.2), the following is obtained

∫ t

0
L(τ)dτ =

∫ t

0
Λ2e2(τ)T (Nd(τ)−NFW (τ)−

∫ t

0

de2(τ)T
dτ

βsgn(e2(τ)))dτβsgn(e2(τ)))dτ

+e2(τ)TNd|t0 −
∫ t

0
e2(τ)dNd(τ)

dτ
− e2(τ)TNFW |t0 +

∫ t

0
e2(τ)dNFW (τ)

dτ
(A.3)

Rearranging the terms of (A.3), we obtain:

∫ t

0
L(τ)dτ =

∫ t

0
Λ2e2(τ)T

(
Nd(τ)−NFW (τ) + 1

Λ2

(
dNFW (τ)

dτ
− dNd(τ)

dτ

)
− βsgn(e2(τ))

)
dτ

+eT2 (t)(Nd(t)−NFW (t))− eT2 (0)(Nd(0)−NFW (0))− β||e2(t)||+ β||e2(0)||
(A.4)

153



154 APPENDIX A. PROOF OF LEMMA 1

Upper bounding the right-hand side of (A.4), the following is obtained:
∫ t

0
L(τ)dτ ≤

∫ t

0
Λ2 ‖ e2(τ) ‖

(
‖ Nd(τ) ‖ − ‖ NFW (τ) ‖ + 1

Λ2

(∥∥∥∥∥dNFW (τ)
dτ

∥∥∥∥∥−
∥∥∥∥∥dNd(τ)

dτ

∥∥∥∥∥
)
− β

)
dτ

+ ‖ e2(t) ‖ (‖ Nd(t) ‖ − ‖ NFW (t) ‖ −β) + β ‖ e2(0) ‖ +eT2 (0)(NFW (0)−Nd(0))
(A.5)

Therefore, one can see from (A.5) that if β is selected according to (4.30), then (4.31) is
satisfied.
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Trajectory points for SPIDER4
Real-time experiments

This appendix presents the values of the commands used to generate trajectories in the
SPIDER4 workspace for the nominal scenario (scenario 1) and the machining scenario
(scenario 2). The units for x, y, and z are given in mm, whereas that for φ, ψ, I, K, H, and
R are in degrees.

B.1 Trajectory points for Scenario 1
The following sequence of points produces the graph of the trajectory for the first scenario;
which can be viewed in the third dimension in Figure 5.4.

Table B.1: List of commands used for trajectory genera-
tion for scenario 1

Line G command x y z φ ψ I J H R
N01 G1 0 0 −1500 0 0 0 0 0 0
N02 G1 0 0 −1650 0 0 0 0 0 0
N03 G1 100 100 −1650 0 0 0 0 0 0
N04 G1 −100 100 −1650 0 0 0 0 0 0
N05 G1 −100 −100 −1650 0 0 0 0 0 0
N06 G1 100 −100 −1650 0 0 0 0 0 0
N07 G1 0 0 −1650 0 0 0 0 0 0
N08 G1 0 0 −1650 20 0 0 0 0 0
N09 G1 0 0 −1650 −20 0 0 0 0 0
N10 G1 0 0 −1650 20 0 0 0 0 0
N11 G1 0 0 −1650 −20 0 0 0 0 0
N12 G1 0 0 −1650 0 0 0 0 0 0
N13 G1 0 0 −1650 −15 20 0 0 0 0
N14 G1 0 0 −1650 15 −20 0 0 0 0
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N15 G1 0 0 −1650 −15 20 0 0 0 0
N16 G1 0 0 −1650 15 −20 0 0 0 0
N17 G1 0 0 −1650 0 0 0 0 0 0
N18 G1 0 0 −1600 0 0 0 0 0 0
N19 G1 0 100 −1600 0 0 0 0 0 0
N20 G3 0 100 −1600 0 0 0 −100 720 0
N21 G1 0 100 −1600 0 0 0 0 0 0
N22 G1 0 100 −1500 0 0 0 0 0 0

B.2 Trajectory points for scenario 2
The following sequence of points produces the graph of the trajectory for the second scenario;
which can be viewed in the third dimension in Figure 5.7.

Table B.2: List of commands used for trajectory genera-
tion for scenario 2

Line G command x y z φ ψ I J H R
N01 G1 0 0 −1500 0 0 0 0 0 0
N02 G1 0 0 −1700 0 0 0 0 0 0
N03 G1 0 −245 −1700 0 0 0 0 0 0
N04 G1 0 −245 −1792 0 0 0 0 0 0
N05 G3 0 −245 −1792 0 0 0 −30 0 0
N06 G1 0 −245 −1750 0 0 0 0 0 0
N07 G1 44.166 −291.074 −1750 0 0 0 0 0 0
N08 G1 44.166 −291.074 −1792 0 0 0 0 0 0
N09 G2 59.194 −296.548 −1792 0 0 0 0 0 8
N10 G2 21.548 −334.194 −1792 0 0 0 0 0 63
N11 G2 16.074 −319.166 −1792 0 0 0 0 0 8
N12 G3 44.166 −291.074 −1792 0 0 0 0 0 47
N13 G1 44.166 −291.074 −1750 0 0 0 0 0 0
N14 G1 −44.166 −291.074 −1750 0 0 0 0 0 0
N15 G1 −44.166 −291.074 −1792 0 0 0 0 0 0
N16 G3 −59.194 −296.548 −1792 0 0 0 0 0 8
N17 G3 −21.548 −334.194 −1792 0 0 0 0 0 63
N18 G3 −16.074 −319.166 −1792 0 0 0 0 0 8
N19 G2 −44.166 −291.074 −1792 0 0 0 0 0 47
N20 G1 −44.166 −291.074 −1750 0 0 0 0 0 0
N21 G1 −44.166 −258.926 −1750 0 0 0 0 0 0
N22 G1 −44.166 −258.926 −1792 0 0 0 0 0 0
N23 G2 −59.194 −253.452 −1792 0 0 0 0 0 8
N24 G2 −21.548 −215.806 −1792 0 0 0 0 0 63
N25 G2 −16.074 −230.834 −1792 0 0 0 0 0 8
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N26 G3 −44.166 −258.926 −1792 0 0 0 0 0 47
N27 G1 −44.166 −258.926 −1750 0 0 0 0 0 0
N28 G1 44.166 −258.926 −1750 0 0 0 0 0 0
N29 G1 44.166 −258.926 −1792 0 0 0 0 0 0
N30 G3 59.194 −253.452 −1792 0 0 0 0 0 8
N31 G3 21.548 −215.806 −1792 0 0 0 0 0 63
N32 G3 16.074 −230.834 −1792 0 0 0 0 0 8
N33 G2 44.166 −258.926 −1792 0 0 0 0 0 47
N34 G1 44.166 −258.926 −1750 0 0 0 0 0 0
N35 G1 0 −195 −1750 0 0 0 0 0 0
N36 G1 0 −195 −1792 0 0 0 0 0 0
N37 G3 0 −195 −1792 0 0 0 −80 0 0
N38 G1 0 −195 −1700 0 0 0 0 0 0
N39 G1 0 0 −1700 0 0 0 0 0 0
N40 G1 0 0 −1500 0 0 0 0 0 0
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