

DOCTORADO EN OPTOMECATRÓNICA EN COMPETENCIAS PROFESIONALES

ASIGNATURA DE LOCALIZACIÓN DE VEHÍCULOS AUTÓNOMOS

PROPÓSITO DE APRENDIZAJE DE LA ASIGNATURA	El alumno será capaz de comprender y aplicar técnicas de localización a vehículos autónomos para la regulación de posición y/o el seguimiento de trayectorias, definiendo las características importantes del entorno donde se desenvuelve el vehículo autónomo.							
CUATRIMESTRE	CUARTO	CUARTO						
TOTAL DE HODAS	PRESENCIALES	NO PRESENCIALES	HORAS POR	PRESENCIALES	NO PRESENCIALES			
TOTAL DE HORAS	75	15	SEMANA	5	1			

UNIDADES DE APRENDIZAJE	HORAS DEL SABER			DEL SABER ACER	HORAS TOTALES	
	Р	NP	Р	NP	Р	NP
I. Localización y construcción simultánea de mapas.	10	0	15	5	25	5
II. Navegación usando análisis de intervalos.	10	0	15	5	25	5
III. Control de robots usando sensores.	10	0	15	5	25	5
	30	0	15	15	75	15

TOTALES

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT	
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022	

COMPETENCIA A LA QUE CONTRIBUYE LA ASIGNATURA

De acuerdo con la metodología de diseño curricular de la DGUTyP, las competencias se desagregan en dos niveles de desempeño: Unidades de Competencias y Capacidades.

La presente asignatura contribuye al logro de la competencia y los niveles de desagregación descritos a continuación:

COMPETENCIA: Plantear, diseñar y modelar problemas relacionados a la localización de vehículos autónomos con base en los conocimientos básicos de modelado y control de sistemas robóticos.

UNIDADES DE COMPETENCIA	CAPACIDADES	CRITERIOS DE DESEMPEÑO
Establecer la factibilidad del uso de modelos de localización de	Elaborar un modelo de posicionamiento del sistema	Elabora un modelo de posicionamiento del sistema robótico que incluya
	robótico utilizando herramientas actualizadas, software y hardware	- Implementar modelos buscando el logro efectivo y oportuno de sus objetivos
		- Cuestionar el desempeño de los modelos matemáticos y plantear de manera fundamentada alternativas de mejora viables.
del sistema en funcionalidad y precisión.	validación de la propuesta.	- Establecer acciones y seleccionar recursos que le permitan implementar un modelo de posicionamiento de un sistema robótico específico en un tiempo determinado.
		- Determinar los escenarios y alternativas de acción en la validación de los modelos, en el corto, mediano y largo plazo, evaluando sus posibles consecuencias.
		consecuencias.
	Determinar los requerimientos de mejora en los modelos de	Elaborar reporte de las especificaciones del sistema:
	posicionamiento de sistemas	- Necesidad o áreas de oportunidad
	robóticos mediante la aplicación de conocimientos teóricos y prácticos	
	haciendo un análisis de las necesidades y del sistema para	- Factibilidad tecnológica
	establecer las especificaciones necesarias.	

E	LABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
Þ	APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

UNIDADES DE APRENDIZAJE

UNIDAD DE APRENDIZAJE	. Localización y construcción simultánea de mapas.							
		El alumno será capaz de determinar las consideraciones para la navegación de vehículos autónomos y definir características del entorno donde se desempeña la tarea.						
HORAS TOTALES	Р	NP	HORAS DEL	Р	NP	HORAS DEL	Р	NP
HORAS TOTALES	25	5	SABER	10	0	SABER HACER	15	5

TEMAS	SABER DIMENSIÓN CONCEPTUAL	SABER HACER DIMENSIÓN ACTUACIONAL	SER DIMENSIÓN SOCIOAFECTIVA
Introducción a la	El problema de la navegación	Evaluar los requerimientos para la navegación.	Analítico
navegación de	Esquema general de navegación	Evaluar la utilidad de los sensores y su	Proactivo
robots.	Sensores para navegación	factibilidad para la localización.	Autónomo
			Responsable
			Ordenado
			Observador
			Disciplinado
Localización y	Métodos de localización.	Construir escenarios posibles para la	Analítico
construcción	Odometría.	aplicación de los métodos de localización.	Proactivo
simultánea de	Scan-matching.	Evaluar los requerimientos de sensores,	Autónomo
mapas (SLAM)	Construcción de mapas.	estructura y escenario para conseguir la	Responsable
, ,	El problema de SLAM.	construcción de mapas.	Ordenado
	El problema de asociación de datos.		Observador
	EKF-SLAM.		Disciplinado

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

PROCESO DE EVALUACIÓN	TÉCNICAS		PACIO RMAC	_		
EVIDENCIA DE DESEMPEÑO	INSTRUMENTO EVALUACIÓN	SUGERIDAS DE ENSEÑANZA Y APRENDIZAJE	AU LA	TAL LER	OT RO	MATERIALES Y EQUIPOS
Para acreditar la asignatura deberá tener una calificación mínima de 8. Se realizará una evaluación integral basada en los siguientes aspectos. Dominio del contenido del curso. Participación en las sesiones teóricas y prácticas. Puesta en marcha de experimentos de laboratorio. Capacidad para la solución de problemas incluyendo programas por computadora.	laboratorio. Ejercicios prácticos.	Solución de problemas Construcción del problema de localización usando software especializado. Exposición Tareas de investigación Prácticas de laboratorio	X	Х		Material y equipo de laboratorio. Pizarrón. Plumón. Material impreso. Software especializado. Computadora. Internet.

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

APRENDIZAJE		I. Navegación usando análisis de intervalos. El alumno será capaz de utilizar la herramienta de análisis de intervalos para la estimación de la posición en un ambiente estructurado.						
PROPOSITO ESPERADO								
HORAS TOTALES	Р	NP	HORAS DEL	Р	NP	HORAS DEL	Р	NP
HORAS IOTALES	25	5	SABER	10	0	SABER HACER	15	5

TEMAS	SABER DIMENSIÓN CONCEPTUAL	SABER HACER DIMENSIÓN ACTUACIONAL	SER DIMENSIÓN SOCIOAFECTIVA
Navegación usando análisis de intervalos.	Introducción al análisis de intervalos. Aritmética de intervalos. Operaciones de contracción y propagación. Restricciones del modelo cinemático. Método de estimación	Aplicación del análisis de intervalos para el problema de localización y navegación. Evaluar las restricciones y las incertidumbres en el modelo usado para localización.	Proactivo
Técnicas de visualización del análisis de intervalos	Programa MATLAB Librería EASIBEX	Usar el software especializado considerando lo evaluado en el tema anterior.	Analítico Proactivo Autónomo Responsable Ordenado Observador Disciplinado

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

PROCESO DE EVALUACIÓN	TÉCNICAS	ESPACIO DE FORMACIÓN				
EVIDENCIA DE DESEMPEÑO	INSTRUMENTO EVALUACIÓN	SUGERIDAS DE ENSEÑANZA Y APRENDIZAJE	AU LA	TAL LER	OT RO	MATERIALES Y EQUIPOS
Para acreditar la asignatura deberá tener una calificación mínima de 8. Se realizará una evaluación integral basada en los siguientes aspectos. Dominio del contenido del curso. Participación en las sesiones teóricas y prácticas. Puesta en marcha de experimentos de laboratorio. Capacidad para la solución de problemas incluyendo programas por computadora.	laboratorio. Ejercicios prácticos.	Solución de problemas Construcción del problema de localización usando software especializado. Exposición Tareas de investigación Prácticas de laboratorio	X	Х		Material y equipo de laboratorio. Pizarrón. Plumón. Material impreso. Software especializado. Computadora. Internet.

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

UNIDAD DE APRENDIZAJE	III. Control de	III. Control de robots usando sensores.							
TROPOSITO ESPERADO		El alumno será capaz de construir el escenario de localización con sensores visuales y/o acústicos aplicando la teoría de control para mejorar la ejecución de la tarea.							
HORAS TOTALES	Р	NP	HORAS DEL	Р	NP	HORAS DEL	Р	NP	
HORAS IOTALES	25	5	SABER	10	0	SABER HACER	15	5	

TEMAS	SABER DIMENSIÓN CONCEPTUAL	SABER HACER DIMENSIÓN ACTUACIONAL	SER DIMENSIÓN SOCIOAFECTIVA
Control usando visión	Introducción a los tipos de control visual. Concepto de matriz de interacción. Métodos de control visual. Control visual clásico basado en imagen. Control visual basado en posición. Control mediante restricciones geométricas.	Aplicación de la teoría de control visual al problema de localización.	Analítico Proactivo Autónomo Responsable Ordenado Observador Disciplinado
Control usando señales acústicas	Funcionamiento de sensores acústicos Formación de imágenes acústicas Control en un sistema USBL	Evaluación de los sensores acústicos y visuales para el sistema de localización. Aplicación de los conceptos de localización a un escenario específico.	Analítico Proactivo Autónomo Responsable Ordenado Observador Disciplinado

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

PROCESO DE EVALUACIÓN	TÉCNICAS	ESPACIO DE FORMACIÓN				
EVIDENCIA DE DESEMPEÑO	INSTRUMENTO EVALUACIÓN	SUGERIDAS DE ENSEÑANZA Y APRENDIZAJE	AU LA	TAL LER	OT RO	MATERIALES Y EQUIPOS
Para acreditar la asignatura deberá tener una calificación mínima de 8. Se realizará una evaluación integral basada en los siguientes aspectos. Dominio del contenido del curso. Participación en las sesiones teóricas y prácticas. Puesta en marcha de experimentos de laboratorio. Capacidad para la solución de problemas incluyendo programas por computadora	laboratorio. Ejercicios prácticos.	Solución de problemas Construcción del problema de localización usando software especializado. Exposición Tareas de investigación Prácticas de laboratorio	X	Х		Material y equipo de laboratorio. Pizarrón. Plumón. Material impreso. Software especializado. Computadora. Internet.

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

REFERENCIAS BIBLIOGRÁFICAS

AUTOR	AÑO	TÍTULO DEL DOCUMENTO	LUGAR DE PUBLICACIÓN	EDITORIAL	ISBN
Bruno Siciliano, Oussama Khatib	2019	Springer Handbook of Robotics	Alemania	Springer-Verlag	978-1119523994
Kevin M. Lynch, Frank C. Park	2017	Modern Robotics: Mechanics, Planning, and Control	Reino Unido	Cambridge University Press	978-1107156302
Luc Jaulin	2019	Mobile Robotics (2nd Edition)	Francia	Wiley	978-1786305237
L. Jaulin, M. Kieffer, O. Didrit, E. Walter	2012	Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics	Francia	Springer	978-1852332198
Mark W. Spong, Seth Hutchinson, M. Vidyasagar	2012	Robot Modeling and Control (2nd Edition)	Estados Unidos	John Wiley & Sons Inc	978-1118078907

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022