

DOCTORADO EN OPTOMECATRÓNICA EN COMPETENCIAS PROFESIONALES

ASIGNATURA DE PROCESAMIENTO DE IMÁGENES EN COLOR

PROPÓSITO DE APRENDIZAJE DE LA ASIGNATURA	Al finalizar el curso el alumno será capaz de procesar, describir y analizar imágenes en color basado en características extraídas automáticamente.						
CUATRIMESTRE	CUARTO	UARTO					
TOTAL DE HORAS	PRESENCIALES	NO PRESENCIALES	HORAS POR	PRESENCIALES	NO PRESENCIALES		
	75	15	SEMANA	5	1		

UNIDADES DE APRENDIZAJE	HORAS D	HORAS DEL SABER		HORAS DEL SABER HACER		TOTALES
	Р	NP	Р	NP	Р	NP
I. Procesamiento de imágenes en color.	10	0	15	5	25	5
II. Histograma de imágenes en color.	10	0	15	5	25	5
III. Descriptores de imágenes en color.	10	0	15	5	25	5
	30	0	15	15	75	15

TOTALES 30 0 45 15 75 15

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT	
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022	

COMPETENCIA A LA QUE CONTRIBUYE LA ASIGNATURA

De acuerdo con la metodología de diseño curricular de la DGUTyP, las competencias se desagregan en dos niveles de desempeño: Unidades de Competencias y Capacidades.

La presente asignatura contribuye al logro de la competencia y los niveles de desagregación descritos a continuación:

COMPETENCIA: Demostrar conocimiento y capacidad de aplicación práctica de los principios fundamentales y las técnicas básicas del procesamiento de imágenes en color.

UNIDADES DE COMPETENCIA	CAPACIDADES	CRITERIOS DE DESEMPEÑO
Evaluar factibilidad de modelos de procesamiento de imágenes a color para para el diseño de sistemas considerando los requerimientos optoelectrónicos.	mejora de procesos optoelectrónicos mediante técnicas de procesamiento de imágenes en color mediante técnicas de análisis de las necesidades y del proceso para establecer las especificaciones del sistema.	 Necesidades o áreas de oportunidad Capacidad del sistema Requerimientos de Software y Hardware Factibilidad tecnológica
	Elaborar modelos de procesamiento de imágenes en color novedoso empleando software especializado para satisfacer los requerimientos del sistema y la validación de la propuesta.	 Anticipar escenarios y alternativas de acción en el diseño de modelos computacionales, en el corto, mediano y largo plazo, evaluando sus posibles consecuencias.

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

UNIDADES DE APRENDIZAJE

UNIDAD DE APRENDIZAJE	I. Procesamie	. Procesamiento de imágenes en color.								
PROPÓSITO ESPERADO	El alumno dor	I alumno dominará los conceptos básicos de procesamiento de imágenes a color.								
HORAS TOTALES	Р	NP	HORAS DEL	Р	NP	HORAS DEL	Р	NP		
HUKAS IUTALES	25	5	SABER	10	0	SABER HACER	15	5		

TEMAS	SABER DIMENSIÓN CONCEPTUAL	SABER HACER DIMENSIÓN ACTUACIONAL	SER DIMENSIÓN SOCIOAFECTIVA
Cuantificación de color	Identificar la reducción del número de colores para representar una imagen Cuantificación de color mediante vectores	ŭ .	Analítico Crítico Capacidad de análisis y síntesis Ordenado
Procesamiento de imágenes en pseudocolor	Describir los elementos de la pseudo coloración	Aplicar técnicas de procesamiento pseudocolor para el análisis de imágenes	Analítico Crítico Capacidad de análisis y síntesis Ordenado
Procesamiento de imágenes a todo color	Identificar los elementos del procesamiento R-G-B Identificar los elementos del procesamiento vectorial (R, G, B)	Aplicar técnicas de procesamiento a todo color para mejorar imágenes	Analítico Crítico Capacidad de análisis y síntesis Ordenado

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

PROCESO DE EVALUACIÓN	TÉCNICAS	ESPACIO DE FORMACIÓN				
EVIDENCIA DE DESEMPEÑO	INSTRUMENTO EVALUACIÓN	SUGERIDAS DE ENSEÑANZA Y APRENDIZAJE	AU LA	TAL LER	OT RO	MATERIALES Y EQUIPOS
Programas computacionales de los modelos básicos procesamiento de imágenes a color	Reportes de prácticas de laboratorio. Ejercicios prácticos.	Solución de problemas Tareas de investigación Exposición Tareas de investigación	Х	X		Computadora, Cañón, Pizarrón, Documentos electrónicos, Equipo y material multimedia, Software de cálculo numérico

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

UNIDAD DE APRENDIZAJE	II. Histogran	I. Histograma de imágenes en color.						
PROPÓSITO ESPERADO	El alumno d	l alumno dominará los elementos principales del análisis de imágenes a color mediante el Histograma.						
HORAS TOTALES P NP HORAS DEL P NP HORAS DEL P					NP			
HORAS TOTALES	25	5	SABER	10	0	SABER HACER	15	5

TEMAS	SABER DIMENSIÓN CONCEPTUAL	SABER HACER DIMENSIÓN ACTUACIONAL	SER DIMENSIÓN SOCIOAFECTIVA
Intersección de histograma	Explicar los elementos que están relacionados con la intersección de los diferentes canales del Histograma	Caracterizar las imágenes de color mediante la intersección del histograma	Analítico Crítico Capacidad de análisis y síntesis Ordenado
Discriminación de histogramas de color	Identificar las diferentes distancias para interpretar el color tales como Minkowski, Manhattan, euclidiana, Chebyshev, cuadrático (Cruz), coseno, Canberra, Smirnov-Kolmogorov, Kullback-Leibler y la divergencia de Jeffrey.	imágenes de color	Analítico Crítico Capacidad de análisis y síntesis Ordenado

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

PROCESO DE EVALUACIÓN	TÉCNICAS	ESPACIO DE FORMACIÓN				
EVIDENCIA DE DESEMPEÑO	INSTRUMENTO EVALUACIÓN	SUGERIDAS DE ENSEÑANZA Y APRENDIZAJE	AU LA	TAL LER	OT RO	MATERIALES Y EQUIPOS
Programas computacionales para el análisis de imágenes mediante el histograma	Reportes de prácticas de laboratorio. Ejercicios prácticos.	Solución de problemas Tareas de investigación Exposición Tareas de investigación	X	Х		Computadora, Cañón, Pizarrón, Documentos electrónicos, Equipo y material multimedia, Software de cálculo numérico

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

UNIDAD DE APRENDIZAJE	III. Descriptores de imágenes en color.							
PROPÓSITO ESPERADO	El alumno dominará los conceptos básicos para extraer información cuantitativa de las imágenes mediante transformaciones aleatorias.							
HODAS TOTALES	Р	NP	HORAS DEL	Р	NP	HORAS DEL	Р	NP
HORAS TOTALES	25	5	SABER	10	0	SABER HACER	15	5

TEMAS	SABER DIMENSIÓN CONCEPTUAL	SABER HACER DIMENSIÓN ACTUACIONAL	SER DIMENSIÓN SOCIOAFECTIVA
Vector de coherencia de color	Identificar el grado en que los píxeles del mismo color forman parte de grandes regiones de un color similar	Analizar imágenes mediante los elementos diferenciales entre imágenes de color	Analítico Crítico Capacidad de análisis y síntesis Ordenado
Matriz de coocurrencia de color	Entender la variación y disparidad de color mediante la matriz de ocurrencia	Analizar imágenes mediante los elementos diferenciales entre imágenes de color	Analítico Crítico Capacidad de análisis y síntesis Ordenado
Correlograma de color	Identificar la correcta distribución de color de los píxeles y la correlación espacial de los pares de colores.		Analítico Crítico Capacidad de análisis y síntesis Ordenado

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

PROCESO DE EVALUACIÓN	TÉCNICAS	ESPACIO DE FORMACIÓN				
EVIDENCIA DE DESEMPEÑO	INSTRUMENTO EVALUACIÓN	SUGERIDAS DE ENSEÑANZA Y APRENDIZAJE	AU LA	TAL LER	OT RO	MATERIALES Y EQUIPOS
Programas computacionales de los modelos para la extracción de características en imágenes en color	Reportes de prácticas de laboratorio. Ejercicios prácticos.	Solución de problemas Tareas de investigación Exposición Tareas de investigación	Х	X		Computadora, Cañón, Pizarrón, Documentos electrónicos, Equipo y material multimedia, Software de cálculo numérico

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

REFERENCIAS BIBLIOGRÁFICAS

AUTOR	AÑO	TÍTULO DEL DOCUMENTO	LUGAR DE PUBLICACIÓN	EDITORIAL	ISBN
Arcangelo Distante, Cosimo Distante	2020	Handbook of Image Processing and Computer Vision Volume 1: From Energy to Image	Suiza	Springer	978-3-030-38147-9
Alberto Fernández Villán	2019	Mastering OpenCV 4 with Python	Reino Unido	Packt Publishing	978-1-78934-491-2
Manas Kamal Bhuyan	2020	Computer Vision and Image Processing	Estados Unidos	CRC Press	978-0-367-26573-1
Jyotismita Chaki , Nilanjan Dey	2021	Image Color Feature Extraction Techniques	Singapore	Springer	978-981-15-5760-6

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022