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With the advent of new technology based on power electronics, power systems may attain better voltage
profile. This implies the proposition of careful strategies to dispatch reactive power in order to take
advantage of all reactive sources, depending on size, location, and availability. This paper proposes an
optimal reactive power dispatch strategy taking care of the steady state voltage stability implications.
Two power systems of the open publications are studied. Power flow analysis has been carried out, which
are the initial conditions for Transient Stability (TS), Small Disturbance (SD), and Continuation Power
Flow (CPF) studies. Steady state voltage stability analysis is used to verify the impact of the optimization
strategy. To demonstrate the proposal, PV curves, eigenvalue analyses, and time domain simulations, are
utilized.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of reactive power dispatch is generally bundled
with the problem of maintaining load voltages within pre-specified
limits. The generator voltage set-point values V ref

Gi are optimized
with respect to certain performance criteria subject to the reac-
tive-power-balance constraints, the load voltage acceptable limits,
the available limits on the generated reactive power, and the limits
on voltage generators. The generation-based reactive power dis-
patch falls under the category of the optimal power flow (OPF).

Since transformer tap ratios and outputs of shunt capacitor/
reactors have a discrete nature, while reactive power output gener-
ators, bus voltage magnitudes and angles are, on the other hand,
continuous variables, the reactive power optimization problem is
formulated as mixed-integer, nonlinear problem [1,2].

Algorithms based on the principles of natural evolution have
been applied successfully to a set of numerical optimization prob-
lems. With a good degree of parallelism and stochastic characteris-
tics, they are adequate for solving intricate optimization problems,
such as those found in reactive optimization, distribution systems
planning, expansion of transmission systems, and economic
dispatch [3–9]. Publications present an extensive list of works con-
cerning the application of evolutionary techniques to power sys-
tems issues [10,21,22]. In general, these applications concentrate
ll rights reserved.
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primarily on power system planning, followed by distribution
systems.

Lai and Ma [3] have presented a modified evolutionary strategy
to solve the reactive power dispatch, obtaining good results. Other
authors [5,6] have applied the same algorithm for other power
system problems, reporting results using the IEEE30 system. A sim-
plified evolution strategy has been used in [6] and compared with
genetic algorithms, and the Lai and Ma algorithm. More recently, a
proposal quite similar to [3] has been presented in [7]. In spite of
these efforts, evolutionary techniques have not yet explored com-
pletely power system applications [11].

Differential Evolution (DE) algorithm has been considered a no-
vel evolutionary computation technique used for optimization
problems. The DE and some other evolutionary techniques exhibit
attractive characteristics such as its simplicity, easy implementa-
tion, and quick convergence. Generally speaking, all population-
based optimization algorithms, no exception for DE, suffer from
long computational times because of their evolutionary/stochastic
nature. This crucial drawback sometimes limits their application to
off-line problems with little or no real-time constraints.

In these kind of algorithms, within an n-dimensional search
space, a fixed number of vectors are randomly initialized, and then
new populations are evolved over time to explore the search space
and locate the optima. Differential Evolutionary strategy (DE) uses
a greedy and less stochastic approach in problem solving. DE com-
bines simple arithmetical operators with the classical operators of
recombination, mutation and selection to evolve from a randomly
generated starting population to a final solution. The fundamental
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idea behind DE is a scheme whereby it generates the trial param-
eter vectors. In each step, the DE mutates vectors by adding
weighted random vector differentials to them. If the fitness of
the trial vector is better than that of the target, then the target vec-
tor is replaced by the trial vector in the next generation.

In this paper an optimal reactive power dispatch is proposed,
where the objective function is the minimization of active power
losses while maintaining system voltage security. In coordination
with the problem formulation, Continuation Power Flow (CPF) is
applied to evaluate and maintain the voltage security margin of
the system. The control variables are the generation voltages, taps
position, and capacitor/reactor banks. The problem is solved by the
Differential Evolution algorithm. Usually, the problem is proposed
as an objective function subject to constraints related to physical
limits, especially on active and reactive power generation. Optimi-
zation techniques are applied to determine the steady-state opti-
mal operating conditions, where voltage magnitudes and angles
at all buses are evaluated for specific levels of load and generation.
Evidently the results of any optimization technique will impact on
the power system stability. In this paper the implication on steady
state voltage stability is taken into account.
2. Optimal reactive power dispatch formulation

The optimal reactive power dispatch goal is to minimize active
power losses and improve the voltage profile by setting generator
bus voltages, VAR compensators, and transformer taps. This prob-
lem may be expressed as follows

min f = flosses

such that

Pd
i � PiðV ; hÞ ¼ 0 i 2 NB� 1

Q d
i � Q iðV ; hÞ ¼ 0 i 2 NPQ

ð1aÞ
Vk min 6 Vk 6 Vk max k ¼ 1;2; :::;NB

Tapl min 6 Tapl 6 Tapl max

Bshunt j min 6 Bshunt j 6 Bshunt j max

ð1bÞ

where flosses represents the system losses; NB represent the system
buses set; NPQ represents the PQ-buses set. Eq. (1a) represents the
load flow equations. V is the bus voltage magnitude, Tapl represents
the l-th transformer’s tap position, and Bshuntj

is the shunt suscep-
tance located at bus j. The generator bus voltages, the transformer
tap-settings, and capacitor/reactor banks are the control variables.
Pd

i � Qd
i are the active and reactive power demand at bus i, respec-

tively. In this paper, constraints (1a), (1b) are handled through the
objective function’s penalization, where the corresponding penalty
parameters are chosen empirically based on experience and the
particular application.
3. Summary on the Differential Evolution algorithm

Differential Evolution (DE) is a floating-point encoding evolu-
tionary algorithm for global optimization over continuous spaces
[12–14], which can work with discrete variables. DE creates new
candidate solutions by combining the parent individual and sev-
eral other individuals of the same population. A candidate replaces
the parent only if it has better fitness value.

DE has three control parameters: amplification factor of the dif-
ference vector-F, crossover control parameter-CR, and population
size-NP. The original DE algorithm keeps fixed all three control
parameters during the optimization process. However, there exists
a lack on knowledge of how to find reasonably good values for the
DE’s control parameters for a given function [15].
Although the DE algorithm has been shown to be a simple, yet
powerful, evolutionary algorithm for optimizing continuous func-
tions, users are still faced with the problem of preliminary testing
and hand-tuning of the evolutionary parameters prior to start up
the actual optimization process. As a solution, self-adaptation has
proved to be highly beneficial for automatically and dynamically
adjusting evolutionary parameters, such as crossover and mutation
rates. Self-adaptation is usually used in Evolution Strategies [16].
Self-adaptation enables an evolutionary strategy to adapt itself to
any general class of problem, by reconfiguring itself accordingly,
and does this without any user interaction.

3.1. DE’s description

This subsection provides the basic background on the DE algo-
rithm [14,17].

An optimization algorithm is concerned with finding a vector x
so as to minimize f(x); x = (x1, x2, . . ., xD). D is the dimensionality of
vector x. The variables’ domains are defined by their lower and
upper bounds: xj,low, xj,upp; j e {1, ..., D}. The initial population is se-
lected uniform randomly between the lower (xj,low) and upper
(xj,upp) bounds defined for each variable xj. These bounds are spec-
ified by the user according to the problem’s nature.

DE is a population-based algorithm and vector xi,G; i = 1, 2, . . .

NP is an individual in this population. NP denotes population size
and G the generation. During one generation for each vector, DE
employs mutation, crossover, and selection operations to produce
a trial vector (offspring) and to select one of these vectors with
the best fitness value.

Once initialized DE mutates randomly chosen vectors to pro-
duce an intermediary population of NP mutant vectors, v. Each vec-
tor in the current population is then recombined with a mutant to
produce a trial population of NP trial vectors. During recombina-
tion, trial vectors overwrite the mutant population, so that a single
array can hold both populations.

3.2. Algorithm

The DE algorithm main steps are:

(a) Set the parameters: F, CR, NP, and the generation counter
G = 1.

(b) Generate the initial population randomly: xi,0 i = 1, 2,...,NP
from solution space.

(c) While (stopping criterion is not met).
(d) For each vector xi,G ={x1i,G, x2i, G, ..., xDi,G}, i = 1, 2, ..., NP.

(1) Choose three indexes r1, r2, r3 within the range [1, NP] ran-
domly. They should be mutually different and also different from
index i.

(2) (Mutation). Generate the mutant vector vi,G+1 according to

v i;Gþ1 ¼ xr1;G þ Fðxr2;G � xr3;GÞ ð2Þ

The scale factor, F e (0, 1+), is a positive real number that con-
trols the rate at which the population evolves. While there is no
upper limit on F, effective values are seldom greater than 1.0.

(3) (Crossover). DE crosses each vector with a mutant vector.
Generate a new vector ui,G+1, where

uji;Gþ1 ¼
v ji;Gþ1if r and ðjÞ 6 CR or j ¼ rnðiÞ;
xji;G if r and ðjÞ > CR and j–rnðiÞ;

�
ð3Þ

r(j) e [0, 1] is the jth evaluation of the uniform random generator
number. rn(i) e (1, 2,...,D) is a randomly chosen index. The crossover
probability, CR e [0, 1], is a user defined value that controls the frac-
tion of parameter values that are copied from the mutant.
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(4) (Selection). Perform a greedy selection scheme:

xi;Gþ1 ¼
ui;Gþ1 if f ðui;Gþ1Þ < f ðxi;GÞ;
xi;G otherwise

�
ð4Þ

Once the new population is defined, the process of mutation,
recombination and selection is repeated until the optimum is lo-
cated, or a pre-specified termination criterion is satisfied, e.g., the
number of generations reaches a preset maximum.

End for
G ¼ Gþ 1
End while
(e) Output the best results: In this paper Table 1 shows applied
intervals and parameters. These ones were elected as typical
values.

4. Application

The optimal reactive power dispatch problem is an ancient
problem, which has been formulated with different details and
solved by different algorithms under a variety of assumptions
[23–27]. Despite everything, it represents yet an important chal-
lenge for electric utilities, in order to maintain the grid within
Table 1
Simulation parameters.

Parameter Value

Generators’ voltage magnitude VG e [1.0, 1.05] p.u.
Taps’ position Tap e [0.95, 1.05] p.u., with steps of

0.003125 p.u.
Shunt susceptances B e [�0.025, 0.30] p.u.
Population size 10 � D
Amplification factor of the

difference vector
F = 0.5

Crossover control parameter CR = 0.9

Fig. 1. Case 1: base c
acceptable margins of reliability and security. Especially in the
near future, the use of indexes and measures available to operators
will be of great help to operate the intelligent grid. In this paper,
the authors emphasize that it is not enough to estimate an optimal
solution. It is relevant to be sure that this solution assures appro-
priate conditions of security and reliability, so that additional stud-
ies are required. In the following examples, PV curves and
eigenvalue calculations are utilized in order to find out the details
about the optimal points.

Two cases are analyzed: (a) 3-machine 9-buses power system,
case 1, Fig. 1, where 3 step-up transformers are utilized [18]; (b)
5-machine 14-buses power system, case 2, Fig. 2, where 5 step-
up transformers are utilized [19]. For both power systems, genera-
tors are equipped with IEEE type 2 excitation systems, Fig. 3. Power
systems are studied through the PSAT program to obtain PV curves
and to carry out time domain and eigenvalue analyses to study the
system’s general performance [19].
4.1. Case 1

The generator’s and excitation’s data are taken from [18]; they
are summarized in Tables 2 and 3, respectively.

For the base case [18], power flow results are depicted in Fig. 1,
where bus voltages and active-reactive power flow are exhibited.
These values are the initial conditions for Transient Stability (TS),
Small Disturbance (SD) and Continuation Power Flow (CPF) stud-
ies. For the optimized cases, the generating units deliver the active
power as in the base case.
4.1.1. Optimal dispatch
Considering generation voltages, tap positions, and one shunt

bank as susceptance in bus 5, the optimization procedure gives rise
to: VG1 = 1.0 p.u., VG2 = 1.02 p.u.; VG3 = 1.015 p.u.; Tap1 = 0.9781
p.u.; Tap2 = 0.9531 p.u.; Tap3 = 0.9812 p.u.; BShunt = 0.0250 p.u.
The optimized bus voltage results (OP) are shown in Table 4, while
Table 5 displays the corresponding power flows. Notice that
ase power flows.



Fig. 2. Case 2: IEEE 14 bus test system.
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voltages stemming from the optimization procedure try to keep a
unitary magnitude, since de generators’ magnitudes are kept with-
in the interval [1.0, 1.05] p.u. This can be modified by allowing
voltages’ wider bounds.

Table 6 summarizes the active and reactive power generation,
load, and losses at steady state. It is worth noting that the optimi-
zation procedure reduces the active and reactive power generation
(especially the last one) as well as the system’s losses.
4.1.2. PV curves, eigenvalue analyses and time domain simulations
To verify the impact of the optimization results, it is important

to verify the system’s stability from the voltage stability point of
view. Fig. 4 depicts the PV curve for the voltage magnitude at
bus 5, under normal operating conditions and under contingencies
on lines 5–4 and lines 5–7. As the load factor k increases, the sys-
tem approaches to an oscillatory instability, presenting a Saddle
Node Bifurcation (SNB1) at k = 2.567, while with lines 5–4 outage



Table 2
Generators’ parameters.

Gen xl R xd x0d x00d T 0do T 00do xq x0q x00q T 0qo T 00qo M D

1 0.0 0 0.146 0.0608 0 8.96 0 0.0969 0.0969 0 0.31 0 47.28 0
2 0.0 0 0.8958 0.1198 0 6 0 0.8645 0.1969 0 0.535 0 12.8 0
3 0.0 0 1.3125 0.1813 0 5.89 0 1.2578 0.25 0 0.6 0 6.02 0

Table 3
Excitation systems’ parameters.

Gen Vrmax Vrmin Ka Ta Kf Tf NUSE Te Tr Ae Be

1 5 �5 20 0.2 0.063 0.35 0.01 0.314 0.001 0.0039 1.555
2 5 �5 20 0.2 0.063 0.35 0.01 0.314 0.001 0.0039 1.555
3 5 �5 20 0.2 0.063 0.35 0.01 0.314 0.001 0.0039 1.555

Table 4
Steady state for the 9-buses power system.

Bus V p.u. Ang deg Pg p.u. Qg p.u. Pl p.u. Ql p.u.

Bus 1 1.0000 0 0.7149 0.0241 0.0000 0.0000
Bus 2 1.0200 8.2493 1.6300 0.2896 0.0000 0.0000
Bus 3 1.0150 4.2378 0.8500 �0.1703 0.0000 0.0000
Bus 4 1.0218 �2.2589 0.0000 0.0000 0.0000 0.0000
Bus 5 1.0063 �4.0979 0.0000 0.0000 1.2500 0.4746
Bus 6 1.0148 �3.8094 0.0000 0.0000 0.9000 0.3000
Bus 7 1.0576 3.0850 0.0000 0.0000 0.0000 0.0000
Bus 8 1.0405 0.3117 0.0000 0.0000 1.0000 0.3500
Bus 9 1.0452 1.5973 0.0000 0.0000 0.0000 0.0000

Table 6
Generation, load, and losses.

Total generation Total load Total losses

Base case
Real power (p.u.) 3.1964 3.15 0.04641
Reactive power (p.u.) 0.2284 1.1246 �0.8962

OP case
Real power (p.u.) 3.1949 3.15 0.04489
Reactive power (p.u.) 0.14342 1.1246 �0.98118

Table 5
Power flows for the 9-buses power system after optimization.

From To Skm, p.u.

Bus 9 Bus 8 0.24472 � j0.09171
Bus 7 Bus 8 0.76058 + j0.09529
Bus 9 Bus 6 0.60528 � j0.11975
Bus 7 Bus 5 0.86942 + j0.04479
Bus 5 Bus 4 �0.4035 � j0.21936
Bus 6 Bus 4 �0.3080 � j0.09777
Bus 2 Bus 7 1.63000 + j0.28965
Bus 3 Bus 9 0.85000 � j0.17030
Bus 1 Bus 4 0.71489 + j0.02408

Fig. 4. PV curve for node 5.

Fig. 3. Type II excitation system.
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the system presents a SNB2 at point k = 1.243. Likewise, k = 1.6885
for outage of lines 5–7 (SNB3).

Additionally, taken into account the optimized case (OP), the
corresponding PV curves are depicted in Fig. 5. It is worth noting



Table 7
Critical mode, damping, and oscillating frequencies.

Case Mode Damping (%) Frequency of
oscillation Hz

r� jx n ¼ � rffiffiffiffiffiffiffiffiffiffiffiffi
r2þx2
p f ¼ x=2p

Base case outage
lines 5–7

�0.42778 + j1.3278 0.3067 0.2113

OP outage lines
5–7

�0.43295 + j1.3225 0.3111 0.2105

Fig. 5. PV curve for bus 5: base case and optimized one.
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that in these cases the optimization procedure increase the sys-
tem’s saddle node bifurcation (SNB4) at k = 2.638 and (SNB5)
k = 1.338. No significant modification is observed when lines 5–7
is out of service (SNB6).
Fig. 6. Generators’ speed a
Note from Fig. 5 that the operating point is close to SNB2-6 if
lines 4–5 or lines 5–7 is out of service. Table 7 shows the eigen-
value closest to the operating point with lines 5–7 out of service,
which is near to the positive axis. The optimization procedure in
this case provide a damping even without changes observed on
SNB (3&6), thus the system exhibits lower oscillations if the opti-
mization is applied. This is demonstrated through time domain
simulation, Fig. 6, which illustrates the angular velocities of gener-
ators when lines 5–7 is tripped and the optimization results are
utilized. It can be seen that the system presents greater oscillation
without optimization.

4.2. Case 2

The generators’ and excitation systems’ data are selected from
[19] and are summarized in Tables 8 and 9, respectively.

4.2.1. Optimal power flow
The optimization technique is applied to the test system. Con-

sidering generation voltages, tap positions, and one shunt bank
as susceptance in bus 14. The optimization gives rise to:
VG1 = 1.050 p.u., VG2 = 1.040 p.u.; VG3 = 1.000 p.u.; VG4 = 1.050;
VG5 = 1.050; Tap1 = 0.950 p.u.; Tap2 = 1.05 p.u.; Tap3 = 0.9500 p.u.;
Tap4 = 1.050; Tap5 = 0.950; BShunt = 0.100 p.u.

Notice that voltages obtained from the optimization technique
keeps them close to 1 p.u. Bus voltages and power flow results
are exhibited in Tables 10 and 11. These values are used in the
Transient Stability (TS), Small Disturbance (SD), and Continuation
Power Flow (CPF) studies.

Table 12 summarizes the active and reactive total generation,
load and losses at steady state. There is an active power reduction
in generation for about 1.27 MW, which is reflected on the active
power losses, while a decrement in the reactive power for about
7.84 MVAR is achieved. Although the optimization technique
improves the voltage profile, mainly due to the shunt capacitor
fter tripping lines 5–7.



Table 9
Excitation systems’ data for Fig. 2.

Gen Vrmax Vrmin Ka Ta Kf Tf NUSE Te Tr Ae Be

1 7.32 0 200 0.02 0.002 1 0.01 0.2 0.001 0.0006 0.9
2 4.38 0 20 0.02 0.001 1 0.01 1.98 0.001 0.0006 0.9
3 4.38 0 20 0.02 0.001 1 0.01 1.98 0.001 0.0006 0.9
4 6.81 1.395 20 0.02 0.001 1 0.01 0.7 0.001 0.0006 0.9
5 6.81 1.395 20 0.02 0.001 1 0.01 0.7 0.001 0.0006 0.9

Table 12
Generation, load, and losses for the 14-buses system.

Total generation Total load Total losses

Table 8
Generators’ data for Fig. 2.

Nod xl R xd x0d x00d T 0do T 00do xq x0q x00q T 0qo T 00qo M D

1 0.2396 0.00 0.8979 0.6 0.23 7.4 0.03 0.646 0.646 0.4 0 0.033 10.296 47.28
3 0.0 0.0031 1.05 0.185 0.13 6.1 0.04 0.98 0.36 0.13 0.3 0.099 13.08 12.8
2 0.0 0.0031 1.05 0.185 0.13 6.1 0.04 0.98 0.36 0.13 0.3 0.099 13.08 6.02
8 0.134 0.0014 1.25 0.232 0.12 4.75 0.06 1.22 0.715 0.12 1.5 0.535 10.12 12.8
6 0.134 0.0014 1.25 0.232 0.12 4.75 0.06 1.22 0.715 0.12 1.5 0.21 10.12 6.02
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installed in bus 14 and the reduction in the generation of active
and reactive power, there is a reactive power losses increment
(2.64 MVAR) under this condition.
Base case
Real power (p.u.) 3.8256 3.5483 0.27734
Reactive power (p.u.) 1.9705 1.1152 0.85536

OP case
4.2.2. PV curves, eigenvalue analyses and time domain simulations
Two conditions are employed to evaluate the PV curves:
Table 10
Steady state for the 14-buses system after optimization.

Bus V p.u. Ang deg. Pg p.u Qg p.u. Pl p.u. Ql p.u.

Bus 1 1.0500 0 3.2649 �0.4503 0.0000 0.0000
Bus 2 1.0400 �7.2603 0.5480 0.7414 0.2973 0.1740
Bus 3 1.0000 �18.2332 0.0000 0.4188 1.2905 0.2603
Bus 4 1.0500 �21.0341 0.0000 0.5996 0.1534 0.1028
Bus 5 1.0500 �19.6228 0.0000 0.5826 0.0000 0.0000
Bus 6 1.0107 �14.8489 0.0000 0.5881 0.6549 0.0548
Bus 7 1.0202 �12.7732 0.0000 0.0000 0.1041 0.0219
Bus 8 1.0124 �19.6228 0.0000 0.5782 0.0000 0.0000
Bus 9 1.0380 �21.8332 0.0000 0.0000 0.4042 0.2274
Bus 10 1.0297 �22.1023 0.0000 0.0000 0.1233 0.0795
Bus 11 1.0350 �21.7574 0.0000 0.0000 0.0480 0.0247
Bus 12 1.0317 �22.2668 0.0000 0.0000 0.0836 0.0219
Bus 13 1.0274 �22.4518 0.0000 0.0000 0.1850 0.0795
Bus 14 1.0237 �23.9293 0.0000 0.0000 0.2041 �0.0363

Table 11
Power flows for the 14-buses system after optimization.

From To Skm p.u.

Bus 2 Bus 7 0.57284 � 0.05917i
Bus 4 Bus 12 0.10365 + 0.02609i
Bus 12 Bus 13 0.0188 + 0.00152i
Bus 4 Bus 13 0.23734 + 0.0639i
Bus 4 Bus 11 0.08718 + 0.03813i
Bus 11 Bus 10 0.03845 + 0.01183i
Bus 9 Bus 10 0.08533 + 0.06886i
Bus 9 Bus 14 0.13976 � 0.00849i
Bus 14 Bus 13 �0.06669 + 0.02289i
Bus 8 Bus 9 0.38781 + 0.27613i
Bus 1 Bus 2 2.2026 � 0.42511i
Bus 3 Bus 2 �0.97043 + 0.10243i
Bus 3 Bus 6 �0.32011 + 0.05603i
Bus 1 Bus 7 1.0623 � 0.02517i
Bus 7 Bus 6 0.87674 � 0.03848i
Bus 2 Bus 6 0.77706 � 0.05112i
Bus 7 Bus 4 0.58161 � 0.26029i
Bus 6 Bus 9 0.24142 + 0.06429i
Bus 6 Bus 8 0.38781 � 0.21334i
Bus 5 Bus 8 0 + 0.5826i

Real power (p.u.) 3.8129 3.5483 0.26463
Reactive power (p.u.) 1.8921 1.1152 0.88172

Fig. 7. PV curve for bus 14.

Fig. 8. Corresponding eigenvalues.



Fig. 9. PV curve of bus 14.

Table 13
Critical mode, damping, and oscillating frequencies.

Case Mode Damping (%) Frequency of
oscillation (Hz)

r� jx n ¼ � rffiffiffiffiffiffiffiffiffiffiffiffi
r2þx2
p f ¼ x=2p

Base case outage
lines 2–6

0.07711 ± j8.5398 �0.9 1.3592

OP outage lines 2–
6

0.11802 ± j8.5871 �1.37 1.3667
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1. Base case
2. lines 2–6 out of service

For the above mentioned conditions, the PV curves are depicted
in Fig. 7. In these curves, the Hopf bifurcation (HB) points are ob-
tained through eigenvalue analysis. In Fig. 7, as the loading factor
k increases, the system gets closer to the HB points. In HB points,
Fig. 10. Generators’ speed aft
the system’s critical eigenvalues cross the imaginary axis. It can
be observed that the system becomes unstable if HB is reached
at k = 1.4 or at k = 1.34 with the lines 2–6 out of service. Fig. 8
exhibits the system’s eigenvalues for k = 1.34, which correspond
to HB point for the lines 2–6 outage. Critical eigenvalues
(0.00933 ± j8.5647) are related to the excitation system in genera-
tor 1.

In order to study the power system behavior, the loading
parameter is selected at 37% (k = 1.37). This point is selected due
to its closeness to the HB. It is important to verify the impact of
the optimization on the power system’s stability.

The PV curves for both the base case and the optimized-base
case are shown in Fig. 9. Notice that the optimization procedure re-
duces the system’s loadability, shown through points SNB 3 and
SNB 4, respect to those obtained for the base case SNB 1 and SNB
2, respectively, (SNB2 and SNB 3 correspond to the case where
the lines 2–6 is out of service). On the other hand, it can be ob-
served that for HB points, the optimization impacts negatively on
the system, decreasing HB in all cases, i. e. for the base case HB
is at k = 1.4 (HB1). Once the optimization is accomplished, HB de-
crease at k = 1.38 (HB3). For the case when the lines 2–6 is tripped,
HB appears at k = 1.34 (HB2) for the base case, whereas a decre-
ment in k is observed at k = 1.32 with the optimization. Therefore,
the optimization impacts on the system’s stability [20], showing
that with the optimization the system becomes unstable faster,
this is confirmed through eigenvalue analyses. Table 13 illustrates
the critical mode associated to the excitation system of generator 1
at the operating point, with lines 2–6 tripped, for the base and opti-
mized cases. It is noteworthy that the real part of the critical mode
is moved even more to the positive axis. Thus, for this power sys-
tem the optimization provides a negative damping. This is also
shown in Table 13 where the damping ratio changes from �0.9
to�1.37, hence impacting on the system’s stability with higher fre-
quency of oscillation. Likewise, results may be corroborated
through time domain simulation, Fig. 10, where the lines 2–6 trip-
ping at t = 1 s is simulated. The generator’s angular velocities of
generators 1 and 3 are illustrated in Fig. 10 where the major impact
is exhibited.
er the lines 2–6 tripping.
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5. Conclusions

It is foreseen that the intelligent grid will require fast estima-
tion indexes and measures available to the system’s operators to
assure operation within acceptable margins of reliability and secu-
rity. In this paper, the authors emphasize that it is not enough to
estimate an optimal solution. It is relevant that this solution as-
sures appropriate conditions of security and reliability, so that
additional studies are required. An optimal reactive power dis-
patch is proposed, where the objective function is the minimiza-
tion of active power losses while maintaining system voltage
security. In coordination with the problem formulation, Continua-
tion Power Flow (CPF) is applied to evaluate and maintain the volt-
age security margin of the system.

An evolutionary computation technique was used to solve a
reactive power dispatch formulated as the minimization of active
power losses subjected to voltage constraints. The formulation
was analyzed for two power systems controlling variables such
as generation voltages, taps position, and shunt elements suscep-
tances, showing a reduction not only on power system losses’
but also resulting in a power generation decrement. Results illus-
trate that in some cases even with losses’ reduction, the impact
on the stability is negative, since sometimes a reduction of SNB
is presented and therefore the loadability of the system is reduced
as well. Special care should be taken into account if the system pre-
sents HB and the operating point is close to HB or SNB, because if
the optimization technique impact negatively, then the operating
point could reach the HB or SNB point with the possibility of a volt-
age collapse.

In order to cope with this, it is important to take into account
within the optimization procedure, mainly as a constraint, a volt-
age stability index which allows foresees a reduction in the dy-
namic performance before the optimization ends. A future paper
will present such inclusion.
Acknowledgment

The authors thank CFE-CONACyT under Grant 88160.
References

[1] Momoh James A, El-Hawary ME, Ramababu Adapa. A review of selected
optimal power flow literature to 1993. Part I: nonlinear and quadratic
programming approaches. IEEE Trans Power Syst 1999;14(1):96–104.

[2] Varadarajan M, Swarup KS. Differential evolutionary algorithm for optimal
reactive power dispatch. Electr Power Energy Syst 2008;30:435–41.

[3] Ma JT, Lai LL. Optimal reactive power dispatch using evolutionary
programming. IEEE/KTH stockholm power technology conference, Sweden;
1995. p. 662–7.
[4] Yeh EC, Venkata SS, Sumic Z. Improved distribution system planning using
computational evolution. IEEE Trans Power Syst 1996;11(2):668–74.

[5] Lai LL, Ma JT. Application of evolutionary programming to reactive power
planning – comparison with nonlinear programming approach. IEEE Trans
Power Syst 1997;12(1):198–206.

[6] Lee KY, Yang FF. Optimal reactive planning using evolutionary algorithms: a
comparative study for evolutionary programming, evolutionary strategy,
genetic algorithm and linear programming. IEEE Trans Power Syst
1998;13(1):101–8.

[7] Park Y, Won J, Park J, Kim D. Generation expansion planning based on
advanced evolutionary programming. IEEE Trans Power Syst
1999;14(1):299–305.

[8] Manoharan PS, Kannan PS, Baskar S, Willjuice Iruthayarajan M. Evolutionary
algorithm solution and KKT based optimality verification to multi-area
economic dispatch. Electr Power Energy Syst 2009;31:365–73.

[9] Baskar G, Mohan MR. Security constrained economic load dispatch using
improved particle swarm optimization suitable for utility system. Electr Power
Energy Syst 2008;30:609–13.

[10] Lai LL. Intelligent system applications in power engineering – evolutionary
programming and neural networks. John Wiley & Sons; 1998.

[11] Gomes JR, Saavedra OR. Optimal reactive power dispatch using evolutionary
computation: extended algorithms. IEE Proc – Gener Transm Distrib 1999;146
(6).

[12] Feoktistov V. Differential evolution: in search of solutions. New York: Springer;
2006.

[13] Price KV, Storn RM, Lampinen JA. Differential evolution. A practical approach
to global optimization. New York: Springer; 2005.

[14] Storn R, Price K. Differential evolution—a simple and efficient heuristic for
global optimization over continuous spaces. J Global Optim 1997;11:341–59.

[15] Liu J, Lampinen J. A fuzzy adaptive differential evolution algorithm. Soft
Comput—Fusion Found Methodol Appl 2005;9(6):448–62.

[16] Bäck T. Evolutionary algorithms in theory and practice. evolution strategies,
evolutionary programming, genetic algorithms. New York: Oxford University
Press; 1996.

[17] Rönkkönen J, Kukkonen S, Price KV. Real-parameter optimization with
differential evolution. In: The 2005 IEEE congress on evolutionary
computation CEC2005, vol 1. IEEE Press; September 2005. p. 506–13.

[18] Anderson PM, Fouad AA. Power system control and stability. IEEE Press; 1994.
[19] Milano F. Power system analysis toolbox: documentation for PSAT version

2.0.0 b; March 2007.
[20] del Valle Y, Venayagamoorthy G, Mohagheghi S, et al. Particle swarm

optimization: basic concepts, variants and applications in power systems.
IEEE Trans Evol Comput 2008;12(2):171–95.

[21] AlRashidi MR, El-Hawary ME. A survey of particle swarm optimization
applications in electric power systems. IEEE Trans Evol Comput
2009;13(4):913–8.

[22] Xuexia Zhang, Weirong Chen, Chaohua Dai, et al. Dynamic multi-group self-
adaptive differential evolution algorithm for reactive power optimization. Int J
Electr Power Energy Syst 2010;32(5):351–7.

[23] Mahadevan K, Kannan PS. Comprehensive learning particle swarm
optimization for reactive power dispatch. Appl Soft Comput
2010;10(2):641–52.

[24] Chaohua Dai, Weirong Chen, Yunfang Zhu, Xuexia Zhang. Reactive power
dispatch considering voltage stability with seeker optimization algorithm.
Electr Power Syst Res 2009;79(10):1462–71.

[25] Abou El Elaa AA, Abidob MA, Spea SR. Optimal power flow using differential
evolution algorithm. Electr Power Syst Res 2010;80(7):878–85.

[26] He R, Taylor GA, Song YH. Multi-objective optimal reactive power flow
including voltage security and demand profile classification. Int J Electr Power
Energy Syst 2008;30(5):327–36.

[27] Arya LD, Titare LS, Kothari DP. Improved particle swarm optimization applied
to reactive power reserve maximization. Int J Electr Power Energy Syst
2010;32(5):368–74.


	An investigation about the impact of the optimal reactive power dispatch solved by DE
	Introduction
	Optimal reactive power dispatch formulation
	Summary on the Differential Evolution algorithm
	DE’s description
	Algorithm

	Application
	Case 1
	Optimal dispatch
	PV curves, eigenvalue analyses and time domain simulations

	Case 2
	Optimal power flow
	PV curves, eigenvalue analyses and time domain simulations


	Conclusions
	Acknowledgment
	References


