
CHAPTER 8

Generic Orthogonal Moments and Applications

C. Camacho-Bello, C. Toxqui-Quitl and A. Padilla-Vivanco

We present a detailed analysis of the Jacobi-Fourier moments and their applications
in digital image processing. In order to reach numerical stability during the compu-
tation of the Jacobi radial polynomials a recursive approach is described. Also, some
discussions are done about the best values of the parameters α and β in terms of its
performance. Moreover, the digital image applications studied here are divided in low
or high orders n of the polynomials. Typically, the pattern recognition applications
are based in low order polynomials whilst image reconstruction can be achieved by
using high order polynomials. On the other hand, the polar pixel approach is taken
into account, in order to increase the numerical accuracy in the calculation of the

C. Camacho-Bello
Universidad Politécnica de Tulancingo, Calle Ingenierías No. 100, 43629, Hidalgo, México
Instituto Nacional de Astrofísica, Óptica y Electrónica,
Calle Luis Enrique Erro No. 1, 72840, Puebla, México
e-mail: joel_camacho@inaoep.mx

C. Toxqui-Quitl, A. Padilla-Vivanco
Universidad Politécnica de Tulancingo, Calle Ingenierías No. 100, 43629, Hidalgo, México
e-mail: carina.toxqui@upt.edu.mx, alfonso.padilla@upt.edu.mx

Editor: G.A. Papakostas, Moments and Moment Invariants - Theory and Applications

DOI: 10.15579/gcsr.vol1.ch8, GCSR Vol. 1, c©Science Gate Publishing 2014
175



176 C. Camacho-Bello et al.

moments, also some ad hoc cases using this polar geometry are studied. Experiments
and results are presented.

8.1 Introduction

The circular orthogonal moments are widely used in pattern recognition, image analysis
and computer vision. They have the ability to characterize, evaluate, and manipulate
digital information with minimum redundant information. Teague [17] was the �rst
who introduced the notion of circular orthogonal moments over the basis set of the
Zernike polynomials. He used a kernel composed of a radial orthogonal polynomial
and an angular Fourier complex function. Bhatia and Wolf [3] pointed out that there
is an in�nite number of complete sets of radial orthogonal polynomials which can
be obtained from the Jacobi polynomials. The variation of parameters α and β of
the Jacobi polynomials can produce di�erent sets of known orthogonal moments [7,
12], such as orthogonal Fourier�Mellin moments [14] (α = β = 2), Chebyshev�Fourier
moments [13] (α = 2, β = 3/2), Pseudo-Jacobi�Fourier moments [2] (α = 4, β = 3),
Legendre�Fourier Moments (α = β = 1), Zernike [17]

(
Js
(
m+ 1,m+ 1, r2

))
and

Pseudo-Zernike Moments [18] (Js (2m+ 2,m+ 2, r) , n = m+ s).

Ping et al. [12] appoints the Jacobi-Fourier moments as Generic orthogonal mo-
ments and suggested that the common formulation of the orthogonal moments through
the Jacobi polynomials will be an advantage for performance analysis of the orthogo-
nal moments; and for searching a prime orthogonal moment. This last idea has been
ignored due to its high computational costs.

The wide range of applications of the Jacobi-Fourier moments have been explored
in di�erent contexts [20], [10], [5]. In all of these investigations, various questions of
interest have emerged: 1) how �nd the best selection from the in�nity of possibilities
for α and β parameters; and therefore to determine the radial polynomial set according
to the particular application, 2) how to correct the numerical instability of high order
radial polynomials for values close to r = 1, and 3) how to beat down the classical
geometric error between the grid of pixels in digital images and the unit disk where
the polynomials are de�ned.

This chapter presents a review of the Generic orthogonal moments and some of their
applications in the digital image processing areas. Some criteria are implemented to
narrow the number of possibilities for the parameters α and β in the pattern recog-
nition cases that are presented here. Also for obtaining a good combination of the
radial and angular orders a descriptor map is proposed and evoluted by using Genetic
algorithms. Two speci�c applications of pattern recognition are analysed: a) human
gait recognition and b) mechanical parts recognition including the case of motion-
blurred images. Another interesting application of the use of Jacobi-Fourier moments
is found in Multifocus image fusion from optical microscope images. The analysis is
done based on a classical fusion scheme of blocks. The Jacobi-Fourier moments are
used as a focus measure for evaluating the contrast or sharpness of each image block.
The results are presented for RGB images.

In relation with the square-circular symmetry drawback between digital images and
unit disk, a comparative analysis in terms of the image reconstruction error with the
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arrangement of polar pixels is presented. For works [5] and [23], only conducted tests
have been performed using the test images such as Lena and the boat, but not for
images with radial symmetry that may have some medical application, such as iris and
retina or for Ronchigram images which are widely used in optical testing. Additionally,
the analysis aims to understand the ability to characterize an image depending on
its shape in order to determine the parameters α and β, which are the best suited
to speci�c applications. Furthermore, this chapter compares the implementation of
the radial Jacobi polynomials by use of the recursive relationships against the generic
radial formula.

Our exposition is organized as follows: Section 8.2 presents an overall review of the
Generic Jacobi- Fourier moments of an image based on Jacobi-Fourier polynomials.
This review includes the recurrence relationships for its computation. In Section 8.3
an application in the area of pattern recognition, the classi�cation of mechanical parts
and blurred-motion objects, is analyzed. In Section 8.4, a detailed analysis based on
the Jacobi-Fourier moment histories of the human gait is presented. In Section 8.5,
a multifocus fusion method for color images is implemented, in order to evaluate the
e�ectiveness of the Jacobi-Fourier moments in combination with a multi-sensor image
fusion scheme. Section 8.6 is related to the new approach of polar pixels and its
mathematical review, also shows the mapping of some images from square to polar
pixels. Three interesting cases of image reconstructions using the methods studied in
this chapter are described in Section 8.7. Finally, in Section 8.8 the conclusions of our
research are presented.

8.2 Generic Jacobi Fourier Moments

The general expression for JFMs of order n and repetitionm, for a given image function
f(r, θ) in polar coordinates is given by

φn,m =

ˆ 2π

0

ˆ 1

0

f (r, θ)Pn,m (r, θ) rdrdθ, (8.1)

where Pn,m (r, θ) is the kernel function that consists of two separable functions sets:
the Jacobi orthogonal polynomial Jn (α, β, r) and exponential Fourier factor exp (jmθ),
expressed by

Pn,m (r, θ) = Jn (α, β, r) exp (jmθ) . (8.2)

For digital images, the Eq.(8.1) cannot be directly applied. Let f (ri,j , θi,j) be a digital
image with spatial dimensions M ×N . Its discrete moments φn,m are given by

φ̃n,m =

M−1∑
i=0

N−1∑
j=0

f (ri,j , θi,j) P̃nm (ri,j , θi,j) (8.3)

where the discrete polar coordinates are expressed by
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ri,j =
√
x2
i + y2

j ri,j ≤ 1, (8.4)

θi,j = arctan

(
yj
xi

)
, (8.5)

and they are transformed by

xi = −1 +
2i

N − 1
, yj = −1 +

2j

M − 1
(8.6)

where i = 0, . . . , N − 1, and j = 0, . . . ,M − 1. When the integrals of Eq.(8.1) are
replaced by summations and the image is normalized inside the unit disk, this approach
is known as zeroth-order approximation or direct method.
Ping et al. [12] �rst used the shifted orthonormal Jacobi polynomials as kernel for

circular moments, which are de�ned as follows

Jn (α, β, r) =

√
w (α, β, r)

bn (α, β) r
Gn (α, β, r) (8.7)

where Gn (α, β, r) are the Jacobi polynomials, bn (α, β) is the normalization constant,
and w (α, β, r) is the weight function [1]. These expressions are computed as follows
[7],

Gn (α, β, r) =
n!Γ (β)

Γ (α+ n)
×

n∑
s=0

(−1)
s Γ (α+ n+ s)

(n− s)!s!Γ (β + s)
rs, (8.8)

bn (α, β) =
n!Γ2 (β) Γ (α− β + n+ 1)

Γ (β + n) Γ (α+ n) (α+ 2n)
, (8.9)

w (α, β, r) = (1− r)α−β rβ−1 (8.10)

where Γ (·) is the Gamma function, α − β > −1 and β, α > 0. The radial function
Jn (r) satis�es the orthogonality property given by,

ˆ 1

0

Jn (α, β, r) Jk (α, β, r) rdr = δnk, (8.11)

where δnk is the Kronecker symbol. The calculations of factorials and gamma function
in Eq.(8.8) and Eq.(8.9) increases the computation time and they are only accurate
for factorials less than 21. Moreover, the computation of the nth power of r in higher
orders than 21 cause numerical instability in values around r = 1 inside the unit disc.
Recently, Camacho et al. [5] proposed a recurrence relation with respect to n to
increase the numerical stability for the computation of the shifted Jacobi polynomials.
The recursive relation is given by

AnJn (α, β, r) = (2r − 1−Bn) Jn−1 (α, β, r)−An−1Jn−2 (α, β, r) , (8.12)
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where r ∈ [0, 1], α− β > −1, β, α > 0 and the coe�cients An and Bn are computed
as follows

An =

√
4n (n+ α− β) (n+ β − 1) (n+ α− 1)

(2n+ α− 1)
2

(2n+ α) (2n+ α− 2)
, (8.13)

Bn =
(α− 1) (2β − α− 1)

(2n+ α− 1) (2 (n− 1) + α− 1)
. (8.14)

To start with the numerical computation, the Jacobi polynomials of zero and �rst
normalized orders are given by

J0 (α, β, r) =

√
w (α, β, r)

b0 (α, β)
, (8.15)

J1 (α, β, r) = J0 (α, β, r)

√
(α+ 2)β

α− β + 1

(
α+ 1

β
r − 1

)
. (8.16)

Figure 8.1 shows how the numerical instability from Eq.(8.7) grows when the order
increases contrary to the recurrence relation of Eq.(8.12), which is much more stable.
On the other hand, changing the parameters α and β in the recurrence relationships,
it is possible to generate di�erent families of known orthogonal polynomials with less
computation time. Some cases of these polynomial families with their recurrence
relationships are shown in Table 8.1. Moreover, the �rst six orders of the radial
polynomials are shown in Fig.(8.2).

8.3 Pattern Recognition

This section provides some examples, where the theory of generic orthogonal mo-
ments has applicability. Since the moments are image invariant descriptors, the most
common use is in the pattern recognition areas. Also, they have been used in image
enhancement applications. In the �rst part of this section, we present an analysis of
the use of low order moments in the context of object classi�cation, biometrics and
later their e�ectiveness in the evaluation of multifocus image fusion.

8.3.1 Object Classi�cation

In every industrial production line, the control of shape, size and quality is an impor-
tant task. Currently, manual inspection is not implemented because of being expensive,
time consuming, and often inaccurate. Contrary, the automatic inspection is inexpen-
sive and time e�cient, and can be used both to remove defective objects from the
production line and to grade objects according to size, shape, and quality. In order to
control the quality of manufactured products such as mechanical parts, many compu-
tational techniques have been proposed into the automatic inspection process [4][6].
In the case of the production of mechanical parts in hostile industrial conditions, such
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Figure 8.1: Numerical instability correction of Jacobi polynomials when α = β = 4 for
the orders: (a) n = 21, (b) n = 23, and (c) n = 26.
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Table 8.1: Parameters of the recurrence relation for di�erent known polynomials

Radial orthogonal

polynomial
Coe�cients

Polynomials of zero

and �rst orders

Legendre An = n√
4n2−1

L0 (r) =
1√
r

Ln (r) = Jn (1, 1, r)

Bn = 0 L1 (r) = L0 (r)
√
3 (2r − 1)

Chebyshev An = 1
2

C0 (r) =
√

8
π

(
1−r
r

) 1
4

Cn (r) = Jn (2, 3/2, r)

Bn = 0 C1 (r) = C0 (r) (4r − 2)

Pseudo-Jacobi An = 2n+3√
n(n+3)

P0 (r) =
√

r (1− r) 12

Pn (r) = Jn (4, 3, r)

Bn = 3
4n2−1

P1 (r) = P0 (r)
√
9
(
3
5
r − 1

)

Mellin An =

√
n(n−1)

2n+1
M0 (r) =

√
2

Mn (r) = Jn (2, 2, r)

Bn = 1
4n2−1

M1 (r) = 6r − 2

Zernike An =
(n−m)(n+m)

2n
√

(n+1)(n−1)
Zmm (r) =

{ √
2 (m+ 1)rm m 6= 0√
(m+ 1)rm m = 0

Zmn (r) = Js
(
m+ 1,m+ 1, r2

)
n = 2s+m Bn = m2

n(n−2)

Zmm+2 (r) = Zmm (r)
√

(m+ 3) (m+ 1)

×
(
m+2
m+1

r2 − 1
)

Pseudo-Zernike An =
(n−m)(n+m+1)

(2n+1)
√

(n+1)n
PZmm (r) =

√
2 (m+ 1)rm

PZmn (r) = Js (2m+ 2, 2m+ 2, r)

n = s+m Bn =
(2m+1)2

4n2−1

PZmm+1 (r) = PZmm (r)
√

(m+ 2) (m+ 1)

×
(

2m+3
m+1

r − 2
)
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(a) (b)

(c (d)

(f)(e)

)

Figure 8.2: First six orders of radial polynomials. (a) Legendre, (b) Chebyshev, (c)
Mellin, (d) Pseudo Jacobi, (e) Zernilke, and (f) Pseudo-Zernike.
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Figure 8.3: Some training images.

as high vibrations or rotations from internal or external vibration sources to the pro-
duction line, the quality control is commonly a�ected by these kinds of motions. To
overcome these drawbacks the method of moments can be well addressed to grade
multidistored images which have been smeared by motion.

The invariant JFMs are given by,

φ̃n,m = gc2

∣∣∣∣∣∣
M−1∑
i=0

N−1∑
j=0

fd (ri,j , θi,j) P̃nm (ri,j , θi,j)

∣∣∣∣∣∣ (8.17)

where fd
( ri,j
c , θi,j

)
is a spatial transformed image by a scale factor c and with

an intensity change g. As the circular moments are not shift, scale, and inten-
sity change invariant in themselves, the non orthogonal Geometric central moments
µfpq =

∑M−1
i=0

∑N−1
j=0 f (i, j) (i−cx)p(j−cy)q are used to normalize them. From this

point view, the scale factor and centroid position of the object in the image can be ob-

tained, respectively, by c =

√
µf
00

µreferencia
00

and
[
cx = m10

m00
, cy = m01

m00

]
. Last constants

are computed using the geometric moments mf
p,q =

∑M−1
i=0

∑N−1
j=0 f (i, j) (i)p(j)q.

Therefore, the JFMs denoted by
∣∣∣φ̃n,m∣∣∣ are shift, scale, rotation, and intensity invari-

ant descriptors. As an example, in Fig.(8.3), two types of objects at di�erent positions,
sizes, orientations and illumination conditions are shown.

The main objective in invariant classi�cation is to obtain a procedure for selecting
discriminative features with small intraclass variance and large interclass separation. In
this work is used, a discriminative measure which evaluates the e�ectiveness of using

a feature
∣∣∣φ̂n,m∣∣∣ to di�erentiate between C classes of objects. It is de�ned as,

Qn,m =

C−1∑
c1=1

C∑
c2=c1−1

∣∣µc1n,m − µc2n,m∣∣− C∑
c1=1

σc1n,m, (8.18)

where µc1n,m and σc1n,m are the mean and standard deviation of the invariants
∣∣∣φ̂c1n,m∣∣∣, for

the classes of objects to be classi�ed c1 = 1..C. The discrimination power of moments
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Figure 8.4: Discriminative measure map of invariant moments.

is shown in Fig.(8.4). As it can be seen in the discriminative map, the descriptor φ̂13,3

has a good performance for the set of objects taken from Fig.(8.3).

A feature vector of an object is chosen through the combinations of the best de-
scriptors obtained by the discriminative measure map. The correct rate classi�cation
for a set of 120 images of screws is shown in Fig.(8.5). This correct classi�cation rate
reaches the 100% for test screw images as shown in Fig.(8.3). As it can be observed
the main characteristic of our test images is that they are very similar between them-
selves. These similarities are related to the millimetric and standard threads. The
classi�cation of test images is reached for all the Jacobi-Fourier moment sets even
though intensity changes and spatial transformations are done over the input images.

In a second example, some vibration-blurred images are used as test images. A set
of this kind of pictures are shown in Fig.(8.6).

It is important taken into account that only one of these images has been chosen for
the analysis. It is seen in the graph of Fig.(8.7) that blurring exists in the image and
is quanti�ed by a blur radius d. This means that the blurring is minimum at the peaks
or at the bottoms of the sine wave vibration, and maximum at the linear part of the
graph for the same exposure time interval of the camera sensor. The image blurring
can be produced by two kinds of sinusoidal motion, at low or at high frequency. In the
�rst case, the relationship between the time exposition te and the period of vibration
T0 is given by te < T0, this is called random motion. Contrary, when te > T0 is called
high frequency motion.

A graph for the percentage of classi�cation in the particular case of random motion
is presented in Fig.(8.8).
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Figure 8.5: Classi�cation percentage using the minimum distance for screw images
with variations in scale, intensity, position, and rotation in the input image.

Figure 8.6: Images of screws smeared by vibration. Each frequency increases the blur-
ring in the vertical direction of the image. For the frequency up 7 Hz the
blurring does not permit distinguish between the two kinds of thread.
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Figure 8.7: Each frequency produces a set of images of the same object. Only one
of them is used into the classi�cation method. The blur extension d is
obtained at the peaks or at the bottoms of the sine wave vibration function.

Figure 8.8: Percentage of Classi�cation using the minimum distance, the images of
screws are blurred by motion.
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8.4 Gait recognition

In the decade of nineties, several algorithms to extract human gait features from im-
age sequences have been studied for individual recognition. They have looked for a
speci�c pattern such as style of walk or pathology. Typically, a model-based approach
for human gait is required to estimate certain parameters such as gait frequency,
phase, and center of mass coordinates. But this method results in a large number
of operations by a single image. Although it is a more accurate model, is also com-
putationally expensive. Other possibilities use holistic measures as Zernike moments
[15]. The main advantage is that a holistic method can be computationally cheaper
than a model-based approach. A novel holistic method for gait description is based on
the Generic Jacobi-Fourier Moment History (JFMH) [10]. Also JFMH can be adapted
by a geometrical moment process to generate invariants to translation, illumination,
small rotations, and scale of walking people.

The JFMH is de�ned as a chronological sequence of moments obtained from an
image stack. The invariant JFMH is denoted as φ̂image,serie,personnm and it is computed
as

∣∣∣φ̂image,serie,personnm

∣∣∣ = g

∣∣∣∣∣∣
M−1∑
i=0

N−1∑
j=0

fimage (ri,j , θi,j) P̃nm (ri,j , θi,j)

∣∣∣∣∣∣ (8.19)

where image = 1 . . . NI are number of images fimage (ruv, θuv) , serie = 1 . . . Nsr
are the index of sequences, person = 1 . . . Nprs are the index for the individuals, and
g is an intensity factor.

The advantage of using the method of orthogonal moments is in �nding the di�er-
ent phases of gait by means of moment histories from frame sequences as shown in
Fig.(8.9).

The moments of an image are shape descriptors and the moment history is a tempo-
ral function of moments. Figure 8.10 shows plots of particular moment values across
two sequences of the same subject. In both cases JFMH pro�les are very similar to
the same subject but di�erent between subjects.

The starting points of the gait sequences are di�erent. Likewise, the same subject
does not walk in the same way in each sample, thus it will be required to chose the
better sequences which can be set on phase. A common way to solve this problem is
looking for a maximum of the correlation coe�cient between a reference section and
the overall moment histories by means of Genetic Algorithms (GA).

The procedure consists in choosing an interval of width H of the moment histories
φ̂image,serie,personnm for each sequence serie. The starting point of the selection is given
by Sp(serie) , where serie = 1 . . . Nsr. The selected interval of the sequence 1 is
shown in Fig.(8.11).

We can propose the reference section given by,

Rh,personnm =
1

Nsr

Nsr∑
serie=1

φ̂Sp(serie)+h,serie,personnm (8.20)
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Figure 8.9: Phases of gait by means the JFM history.
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Figure 8.10: Moment history pro�les for certain particular values n, m of (a) subject
1 (b) subject 2.

Figure 8.11: Moment histories (a) at any time (b) reference section (c) on phase.
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where h = 1, 2, ..H.
We are interested in �nding intervals of the moment histories which can be correlated

with the reference section. If temporal functions of moments can be set on phase, it
implies that the subject gait is obtained. Consequently, JFMHs on phase are taken
into account as part of the training database.
If we use again the discriminative measure de�ned before in Eq.(8.18), but to dif-

ferentiate among Cp persons, it is given by

Qn,m =

Cp−1∑
c1=1

Cp∑
c2=c1−1

∣∣µc1n,m − µc2n,m∣∣− Cp∑
c1=1

σc1n,m, (8.21)

where µc1n,m and σc1n,m are the mean and standard deviation of the phased JFMHs∣∣∣φ̂c1n,m∣∣∣ .
The best descriptor is found from the discriminative measure Q. Furthermore, the

descriptor vector of the person gait is built from the best descriptors. Also it is possible
to seek trough Genetic algorithms (GA), an appropriate combination of descriptors.
The most e�ective vector descriptor combines the best descriptors given by the metric
Q using GA.
Home database: Our home database consists of 15 subjects walking on a yard

under three di�erent distances. The acquisition does not have any control on lighting
conditions. Numerical normalization of the silhouette images is achieved by computing
the center of mass in the x and y directions, the area, and the intensity of objects using
geometric moments. Because of the di�erent distances to the camera, pre-processing
silhouettes with sizes of 80× 80, 93× 93 and 115× 115 pixels are used, some images
are shown in Fig.(8.12).
By using the JFMs with α = β = 10 to our pre-processing home database the

classi�cations results are shown in Fig.(8.13).
CMU database: In order to carry out the algorithm evaluation another two databases

are used. The Carnegie Mellon University Robotics Laboratory (CMU) database is
used. It consists of 25 subjects walking on a treadmill. It contains six motion se-
quences of 11 seconds long, recorded at 30 frames per second. The images have a
resolution of 640 × 480 and were taken under six di�erent viewpoints and two dif-
ferent speeds. Only the normal to the subject walking direction and slow walking
speed is analyzed. Some lower body silhouettes from MoBo database are shown in
Fig.(8.14a). Also scattergrams of 14 shapes of subjects in the 2D feature space are
shown in Fig.(8.14b). Again, the Jacobi-Fourier descriptors based on Jn (10, 10, r)
polynomials achieve a full recognition percentage and the better performance using
only ten descriptors. These last results are shown in the curves of the Fig.(8.14c).
Casia A database: The Institute of Automation, Chinese Academy of Sciences

(CASIA) provides the CASIA Gait Database to gait recognition and contains three
datasets. Our algorithm is tested on DatasetA, this set consists of 20 subjects walking
on a yard, and with variation of the walker speed. If the sequences have at least
a length of 50 images they are processed. Again, only the normal to the subject
walking direction is used. The pre-processing silhouettes from CASIA_A database
are shown in Fig.(8.15a). Additionally, scattergrams of the 10 shapes of subjects in
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Figure 8.12: (a) Image acquisition process of 15 subjects walking on a yard. (b) Gait
cycle sequence of pre-processing images of silhouettes of 93× 93 pixels.

Figure 8.13: CCR of subjects from our home database using a descriptor vector based
on JFMs.
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Figure 8.14: (a) Image acquisition of 14 subjects walking on a treadmill, (b) Scatter-
gram, (c) CCR curves.

the 3D feature space are shown in Fig.(8.15b). As in the past examples, Jacobi-
Fourier descriptors obtained from Jn (10, 10, r) polynomials achieve a full recognition
percentage with only three descriptors.

In general, it has been shown that the proposed algorithm has good performance in
the three databases, regardless of the di�erent characteristics of each one. Also the
indoors and outdoors databases have been used, those with di�erent time intervals,
velocities, and distances to the camera. In all cases, only the normal to the subject
walking direction is used and just the lower body images are taken into account for
computing of moments. The latter means less information and hence less computa-
tional e�ort. Moreover, it can be seen that lower order moments than 9 are required
for image description as shown in Fig.(8.15c). In the three databases, six sequences
are taken into account as a test subset, two more than the training subset.

8.5 Applications in Image Enhancement

8.5.1 Digital Image Fusion

Image fusion allows merging images from multiple sensors or even multiple images
from the same sensor. Its goal is to integrate complementary information to provide
a composite image which could be used to better understanding of the entire scene.
On the other hand, focusing cameras is an important problem in computer vision and
microscopy, due to the limited depth of �eld of optical lenses in CCD devices. One way
to overcome this problem is to take di�erent in-focus parts and combine them into
a single composite image which contains the entire focused scene. Many techniques
have been used to generate fusion schemes, including Zernike moment function [21].
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Figure 8.15: (a) Image acquisition of 10 subjects walking on a treadmill, (b) Scatter-
gram, (c) CCR curves.

In this context the fusion of microscope images is done. The procedure is implemented
in every channel RGB. The �nal image fusion results from the input images.
The discrete JFMs φn,m are used as a focus measure for evaluating the contrast or

sharpness of an image. The contrast measure of a block or region f block (ri,j , θi,j) in
the image is given by,

φ̃blockn,m =

∆x−1∑
i=0

∆y−1∑
j=0

f block (ri,j , θi,j) P̃nm (ri,j , θi,j) (8.22)

The input image f (r, θ) is decomposed into blocks of variable size ∆xX∆y. JFMs

are computed for each ith_Block as a focus measure, and denoted by φ̃blockn,m . From
this point, the fused image is constructed by blocks as follows,

Block(fusioned) =

{
Block(f1) if

∣∣∣φ̃block(f1))
n,m

∣∣∣ ≥ ∣∣∣φ̃block(f2)
n,m

∣∣∣
Block(f2) otherwise

(8.23)

where
∣∣∣φ̃f1(block)
n,m

∣∣∣ denoted the JFMs for the ith_Block. of an input image f1 (r, θ).

A fusion scheme based on JFMs is shown in Fig.(8.16).
The test images used in this section are taken by using a microscope optical system

with focus at three di�erent planes. Some input images and their JFMs are shown in
Fig.(8.17). As we can see, the algorithm identi�es focused regions in an input image.
The images are fused by comparing the contrast by the method of regions.
Figure 8.18 shows the result on fusing input images using the method of JFMs.
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Figure 8.16: Fusion scheme using JFMs.

Figure 8.17: Multi-focus input images with three focused regions and their correspond-
ing JFMs. The moments are used as a focus measure for evaluating the
contrast or sharpness of a block o region.
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Figure 8.18: Result of image fusion of the better focused regions using the maximum
value of JFMs from input images.

8.6 High-precision computation of Jacobi-Fourier

moments

In the literature, there are few results showing reconstructions of images greater than
or equal to 128 × 128 pixels [19, 16, 22], due to errors inherent in the calculation
of moments and high computational times. Recently, it has been demonstrated that
the arrangement of polar pixels is fast and has a high-precision in comparison with
other methods. In 2007, Xin et al. [23] proposed this approach, which consists
in recon�guring the square pixel array to an arrangement of polar pixels to eliminate
errors of geometry and to be able to calculate the integral analytically. Sometime later,
Camacho-Bello et al. [5] proposes a recurrence relation to eliminate the numerical
instability of the orthogonal polynomials and to compare with other methods in terms
of invariance, reconstruction error and computation time.

In a previous analysis, it has been demonstrated, that two types of errors occurred
in the direct calculation of orthogonal moments: geometric error and numerical in-
tegration error [9]. To increase the numerical accuracy calculation Xin et al. [23]
proposed an algorithm based on changing the shape of the square pixels in a polar
pixels scheme, as shown in Fig.(8.19). The unit disk of polar pixels scheme is uniformly
divided along the radial direction into U sections, with radial distance of ru = u/U
where u = 1 . . . U . The number of polar pixels in the uth ring is Su = (2u− 1)V ,
with angles θuv = (v − 1) 2π/Su, where v = 1 . . . Su and V is the number of sectors
contained in the innermost section. The total number of polar pixels is V U2 and
each of them has an area of π/ V U2. In practice, Xin et al. [23] recommended to set
the value of V = 4 and N/2 ≤ U ≤ N for a N ×N image.

The calculation of the JFMs is performed by summation of all sectors inside the
unit disk. Equation 8.1 for the calculation of JFMs are rewritten as

φ̂nm =

U∑
u=1

(2u−1)V∑
v=1

f̂ (ruv, θuv)ωnm (ruv, θuv) , (8.24)
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(a) (b)

Figure 8.19: Unit disk with a radius of 20 pixels: (a) square pixels, (b) polar pixels.
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Figure 8.20: Polar pixel representation or concentric sector Ωuv.

where f̂ (ruv, θuv) is an approximation of the function f (ri,j , θi,j) de�ned over a set
of concentric sectors Ωuv and the factor ωnm (ruv, θuv) is given by

ωnm (ruv, θuv) =

ˆ ˆ
Ωuv

Jn (α, β, r) exp (jmθ) rdrdθ

=

ˆ r(e)uv

r
(s)
uv

Jn (α, β, r) rdr

ˆ θ(e)uv

θ
(s)
uv

exp (jmθ) dθ

= I1 × I2

, (8.25)

where (r
(s)
uv , θ

(e)
uv ), (r

(s)
uv , θ

(s)
uv ), (r

(e)
uv , θ

(e)
uv ) and (r

(e)
uv , θ

(s)
uv ) denote the starting and ending

points of the sector Ωuv, where (ruv, θuv) represent the radius and angle of each
sector Ωuv, as shown in Fig.(8.20), respectively. The integral of the complex Fourier
component of Eq.(8.25) can be analytically calculated as follows,

I2 =

{
j
m

[
exp

(
−jmθ(e)

uv

)
− exp

(
−jmθ(s)

uv

)]
, m 6= 0

θ
(e)
uv − θ(s)

uv , m = 0
. (8.26)

Camacho et al. [5] propose to use 10-point Gaussian quadrature rule with the recur-
rence relation of Eq.(8.12) for the integral I1, which is less accurate but numerically
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Table 8.2: Weights (ηk) and location of sampling points (zk) for10-point Gaussian
quadrature

k ηk zk
1 0.0666713443 −0.9739065285
2 0.1494513492 −0.8650633667
3 0.2190863625 −0.6794095683
4 0.2692667193 −0.4333953941
5 0.2955242247 −0.1488743390
6 0.2955242247 0.1488743390
7 0.2692667193 0.4333953941
8 0.2190863625 0.6794095683
9 0.1494513492 0.8650633667
10 0.0666713443 0.9739065285

more stable for greater than 21 orders. The composite Gaussian quadrature rule for
numerical integration of the Jacobi polynomial can be stated as,

I1 =
r

(e)
uv − r(s)

uv

2

10∑
k=1

ηkJn

(
α, β,

r
(e)
uv − r(s)

uv

2
zk +

r
(e)
uv + r

(s)
uv

2

)
. (8.27)

where ηk are weights and zk ∈ [−1, 1] are the points where the function is evaluated.
The values of ηk and zk are given in Table 8.2.

The locations of the Cartesian pixels do not coincide with those of the polar pixels,
as shown in Fig.(8.19). This problem can be resolved by bicubic interpolation of third
order introduced in reference [8]. Cubic convolution interpolation is a new technique
for resampling discrete data. The cubic convolution interpolation kernel is given by

u (x) =


3
2 |x|

3 − 5
2 |x|

2
+ 1 0 < |x| < 1

− 1
2 |x|

3
+ 5

2 |x|
2 − 4 |x|+ 2 1 < |x| < 2

0 2 < |x|
. (8.28)

The image value at Ωuv can be estimated via the two-dimensional cubic convolution
interpolation function, this function is expressed by

f̂ (ruv, θuv) =

k+2∑
i=k−1

l+2∑
j=l−1

f (i, j)u (k − i)u (l − j) (8.29)

where u is the interpolation kernel of Eq.(8.28) and k = N
2 ruv cos θuv + N

2 + 1, and

l = N
2 ruv sin θuv + N

2 + 1. Figure 8.21 shows the Lena image of 64 × 64 pixels and
its representation in polar pixels with parameters V = 4 and U = 32. The polar pixel
values were obtained by bicubic interpolation of Eq.(8.29).
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(a) (b)

Figure 8.21: Lena image: (a) square pixels, (b) polar pixels.

8.7 Image Reconstruction

Image reconstruction can help to determine how well an image can be characterized
by a small �nite set of its moments. According to orthogonal theories, an original
image f (i, j) can be reconstructed by an in�nite number of JFMs. The reconstructed
discrete distribution of the image is given by

f̃ (i, j) =

L∑
n=0

L∑
m=0

∣∣∣φ̂nm∣∣∣ Jn (α, β, rij) exp (−jmθij) (8.30)

where f̃ (i, j) is the reconstructed version of f (i, j), and L is the maximum order of
JFMs used in the reconstruction of the image. The NIRE is used for the performance
analysis of orthogonal moments [14]. It is de�ned as the normalized mean square error

between the input image f (i, j) and its reconstruction f̃ (i, j), in discrete form is given
by,

NIRE =

∑N−1
i=0

∑M−1
j=0

[
f̃ (i, j)− f (i, j)

]2
∑N−1
i=0

∑M−1
j=0 f2 (i, j)

. (8.31)

Bhatia and Wolf pointed out [3] there is an in�nite number of complete sets of
orthogonal polynomials that are invariant to rotation and can be obtained from the
Jacobi polynomials. Each set is obtained by the combination of the parameters α
and β. Therefore, there may be a set of orthogonal moments better �t to speci�c
applications. The fast calculation of the JFMs facilitates the search for the best values
α and β that best �t speci�c applications. Camacho et al. [5] de�ne the mean of
NIRE as metric to quantitatively evaluate the best combinations of α and β. The
mean value of NIRE is given by,

Ψ (α, β, p) =
1

p

p∑
L=1

NIRE (L,α, β) , (8.32)
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(a) (b) (c)

Figure 8.22: Test images: (a) iris of a human eye, (b) cornea of a human eye, (c)
ronchigram.

where L is the maximum order of JFMs used in the reconstruction of the input image
and p is the cutting orders.

In this section a comparative analysis is performed, in terms of the reconstruction
error for di�erent values of α and β for images of radial symmetry. This kind of images
may have some interesting applications such as iris recognition, retina inspection and
analysis of ronchigrams [11], as shown in Fig.(8.22). We conducted an exhaustive
search of the α = 1 . . . 10 and β = 1 . . . 10 values in order to �nd the optimal com-
bination of parameters α and β that best reconstruct the test images. The results of
the three test images are presented below.

Iris image: The graph of Fig.(8.23a) shows the results of Eq.(8.32), which present
local minima using the following relationship α = 2β − 2. Here the Pseudo-Jacobi-
Fourier moments satisfy this condition. The minimum value of the search neighbor-
hood is when α = 10 and β = 6. The NIRE for the minimum value and some nearby
values are shown in Fig.(8.23b). Also, the reconstruction with the best parameters
α = 10 and β = 6 is shown in Fig.(8.23c).

Cornea Image: The results of the search neighborhood are shown in Fig.(8.24a),
as can be seen the minimum values are found when α = β; the Mellin-Fourier and
shifted Legendre-Fourier moments satisfy this condition. Newly, the results of NIRE
when α = β = 1, 2, 3, 4, 5 are shown in Fig.(8.24b). Finally, the image reconstruction
of the cornea when α = β = 1 are shown in Fig.(8.24c), these last found values have
the best performance.

Ronchigram Image: In Fig.(8.25a) is shown that the minimum values for the
average of the NIRE is found when α = β. The NIRE for the highest values are shown
in Fig.(8.25b), as can be seen these values have better performance when α = β = 2.
Also, the reconstruction of these values is shown in Fig.(8.25c).

The results of the search for the best parameters α and β for the test images have
particular behavior, the zero values of α − β are related to the minimum values of
the search space. For example, images of the ronchigram and cornea have better
performance when α − β = 0 and the worst results when α − β = 9. Therefore, the
greater di�erence of α − β, the greater the average of NIRE. In the iris image, the
pupil area has values of zero, for this reason the minimum of the search neighborhood
are displaced by the expression |α− 2β − 2|. Also note that, the results of Figures
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(a) (b)

L=20 L=80 L=140 L=200

Maximum order reconstruction

(c)

Figure 8.23: Results of the iris image. (a) Chart for �nding the best values α and β.
(b) NIRE of the best parameters. (c) Reconstruction of iris image with
α = 10 and β = 8.

(a) (b)

L=20 L=80 L=140 L=200

Maximum order reconstruction

(c)

Figure 8.24: Results of the cornea image. (a) Chart for �nding the best values α and
β. (b) NIRE of the best parameters. (c) Reconstruction of cornea image
with α = β = 1.
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(a) (b)

L=20 L=80 L=140 L=200

Maximum order reconstruction

(c)

Figure 8.25: Results of the ronchigram image. (a) Chart for �nding the best values α
and β. (b) NIRE of the best parameters. (c) Reconstruction of ronchi-
gram image with α = β = 2.

8.23b, 8.24b and 8.25b, do not undergo signi�cant changes in NIRE for the minimum
values that were found.

8.8 Conclusions

The method of Generic orthogonal moments based on the Jacobi-Fourier polynomials
has been presented. Because the moment invariants are useful feature descriptors for
pattern recognition, we have investigated them and proven for gait description from
sequences of lower body images. One of the main contributions of this method is the
temporal correlation of JFM Histories using genetic algorithms. Also, the di�erent
phases of gait are obtained by means the JFMHs in a sequence. Three gait databases
are used for algorithm evaluation: our home database, MoBo, and CASIA A. The
starting point of the gait cycles is solved through Genetic Algorithms. It is known
that, the kernel of the moments based on the Generic Jacobi functions generates an
in�nity number of orthogonal polynomial families. For this reason, a graphical analysis
is done to determine the parameter values for α and β which should be bounded in
the interval [0, 1]. Besides, JFM are adapted by a geometrical moment procedure to
generate invariants to translation, illumination, small rotations, and scale of walking
people. During the analysis, two discriminative maps are obtained. The so-called Q
discriminative measure and the GA(Q) evolved discriminative map.
Another application of the Jacobi-Fourier moments have been used to classify me-

chanical parts blurred by motion. The classi�cation method is applied to images of
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screws with millimetric and standard thread, with little di�erences between them. The
motion blurred images are acquired under high frequency sinusoidal motion. Temporal
functions can be obtained following the centroid of mass of the object using geometric
moments. With the level of distortion in the images produced by the vibration ex-
periments, the Jacobi-Fourier moments are capable to discriminate between the two
classes of objects until some level of blurring, using a few Jacobi-Fourier descriptors
as is shown.

Besides in digital image enhancement, a new algorithm for muti-focus image fusion
has been proposed. The focus measure is based in orthogonal Generic moments of
a discrete image function. The algorithm divides the input images into blocks and
evaluate the contrast of each block. From this point of view, the boundaries between
focused and defocused regions can be determined. The method selects the better
focused regions to create the �nal focused image. The fusion of microscope images
proposed here is illustrated for the case of color images de�ned in the RGB space. The
results show that, the method based on Jacobi-Fourier moments can produce a fused
image with better contrast that the corresponding defocused regions, even more the
original hue is conserved.

Also, we have proposed a novel approach for high-precision, fast computation of
JFMs. Furthermore, this approach allows us to generate sets of di�erent orthogonal
moments. The arrangement of polar pixels used and the proposed recurrence relation-
ships for di�erent polynomial families improves computation time and reconstruction
error for gray-level images with large size. The numerical stability and accuracy of
our method is proved through the NIRE. Therefore, the proposed method is not only
faster, but is also high precision and numerically stable. It has direct applications in
pattern recognition problems where invariant feature vectors are needed.

Finally, we have reconstructed gray-level images such as the Iris, Retina and Ronchi-
grams images using the Jacobi-Fourier moment sets.The performance of these mo-
ments in image reconstruction has been measured by only one image quality metrics
such as the NIRE. As it has been shown the contrast in the reconstructed images has
been practically retrieved in overall way.
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