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Huapalcalco, 43629, México.

ABSTRACT

Nowadays, breast lesions are a common health problem among women. Breast thermograms are images recorded 
by digital-optical systems with high resolution that use infrared technology in order to show vascular and tem-
perature changes. In the present work, we study benign and malignant breast lesions shape by means of fractal 
analysis. The Fractal Dimension (FD) is calculated with the Box Counting method and the Hurst exponent is 
obtained using the Wavelet coefficients and the Detrending Moving Average algorithm. These algorithms was 
applied to synthetic images and breast thermograms. The Fractal Dimension value is used for patient classification 
with or without breast injury. The proposed methodology was applied to the Database For Mastology 
Research (DMR) in order to classify thermographic images. The FD of ROIs for breast thermograms was 
calculated. Results shows that the FD BCM values ranges from [0.45,0.81] in 4 healthy cases and from 
[0.92,1.33] in 4 unhealthy cases.
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1. INTRODUCTION

In recent years, breast cancer has been a relevant health problem that shows growing trend in both incidence 
and early diagnosis1. The main characteristic of this condition is the rapid and disorganized growing trend of 
abnormal cells. This process causes an exponential increase of the temperature in tissue2. Thermal symmetry and 
asymmetry caused by normal and abnormal cells can be analyzed through the use of infrared images,34. Moreover 
metabolic activity and vascular circulation can be also studied through of this kind of images5. Abnormal cells 
show a chaotic and poorly regulated growth. They also show an irregular morphology that can not be measured 
by classic Euclidean geometry based on shapes such as lines or spheres6. Computer-Aided Detection (CAD) 
systems based on the analysis of breast thermograms can be used to help us in order to identify abnormal 
thermal patterns related with possible breast cancer7.

Several studies have shown that by fractal geometry, an irregular shape, can be useful to quantitatively 
describe the morphology of tumors6. James W. et al., describes mathematical models known as statistical growth 
processes and the application fractals to cancer as morphometric tools for diagnostic and prognostic purposes.8. 
Acording to Katharina Klein et al., they use fractal analysis to identify malignant cells in microscopic images 
by reflection interference contrast of individual living cells9. On the other hand, Maryam Arab Zade et al., 
indicate that the Fractal Dimension (FD) allows to differentiate malignant or benign tumors in the breast in 
a quantitative way10. Anindita et al., research the efficacy of fractal characteristics for the discrimination of 
abnormal and normal breast images in mammography and breast thermography11. In this work, we calculate 
the Fractal Dimension and the Hurst exponent of the maximum temperature regions in breast thermograms. 
The paper is organized as follows. In Section 2 we describe the mathematical methods to calculate the Fractal 
Dimension and Hurst exponent. Section 3 presents the numerical analysis using synthetic images. The fractal 
analysis of the breast thermograms are given in Section 4. Finally, in Section 5 the conclusions are sumarized.
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2. METHODS FOR CALCULATE THE FRACTAL DIMENSION AND THE HURST
EXPONENT

The fractal geometry analysis was first introduced by Mandelbrot in 1975 in order to study the irregular surfaces
found in nature as tree leaves, snowflakes, and among others12. The main characteristics of a fractal are: self-
similarity and fractal dimension. Different methods have been proposed to calculate the fractal dimension and
the Hurst Exponent (H), some of them are analyzed below.

2.1 Box Counting Method (BCM)

This algorithm is very common to mesure the fractal dimension of the objects contour13. The basic mathematical
form is,

N(r) = Cr−FD, (1)

where N (r) is the number of boxes that cover the perimeter of the image, C is a constant, r is the size of the
side of each square box and D is the fractal dimension. Thus, FD, for a given r, of the object is defined as14,

FD =
log(N(r))

log( 1
r )

. (2)

To obtain the FD of the object, it is necessary to graph log N (r) vs log (1/(r)) and the slope of the line that best
fitting the data is the FD15. Figure 1 shows an irregular sample contour and its respective Fractal dimension.

Figure 1: Calculation of the fractal dimension of an irregular contour shape by the Box Counting method. a)
Samplig of a rough shape. In this case N(r) = 15 and 1/r=5. The slope of the line in b) is a measure of the
fractal dimension FD.

2.2 Detrending Moving Average (DMA)

For a two-dimensional image f(i, j) of size N × M the generalized variance is defined by,

σ2
DMA =

1

(N − nmax)(M −mmax)

N−u∑
i=n−u

M−v∑
j=m−v

[f(i, j)− f̃n,m(i, j)]2, (3)
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with f̃n,m given by,

f̃n,m =
1

nm

n−1−u∑
i=k=−u

m−1−v∑
l=−v

f(i− k, j − l), (4)

where n is the sliding window nmax = max(n) << N , mmax = max(M) << M , u and v are determinate by
u = int(n · θ1) and v = int(m · θ2), respectively. And θ1,θ2 ∈ [0,1]16. The variance obtained at each subarray is
plotted as a function of s = m × n on log − log axes; the slope of the regression line corresponds to the Hurst
exponent.

2.3 Wavelet coefficients (WC)

The Wavelet coefficients can reflect the information of the spatial-frequency image content. Thus, Wavelet
coefficients of a real function f(x, y) can be defined as,

Cm,n =
1√
m

∑
x

∑
y

fx,yψm,n

(
x− n
m

,
y − n
m

)
. (5)

where ψm,n is the basic Wavelet. For a given scale m, the energy of coefficients at that scale are,

Γm =
1
√
nm

∑
n∈Z
|Cm,n|2. (6)

Γm is now the energy of the Wavelet coefficients at scale m,nm is the number of coefficients at scale m17.

Γm = 2m(γ)Γ0 (7)

where γ=2H + 1 and 0 < H < 1.

The energy obtained at each scale is plotted on log− log axes; the slope of the regression line corresponds to the
Hurst exponent. The Hurst exponent value is related with the FD as,

FD = 2−H (8)

3. NUMERICAL ANALYSIS USING SYNTHETIC IMAGES

In this section, we present the numerical analysis using synthetic images. We use shapes with smooth and
rougher contours as show in Figs. 2. In the first set of Table 1, the binary images (a-f) have smooth and rough
contours. The box counting method described in section 2.1 applies to this data set. The FD BCM obtained
for image a) is smaller than that corresponding to image b). This is because the shape of the image a) is softer
than the shape of image b). A similar behavior of the FD BCM is obtained for the shapes c-d and e-f. For the
Hurst exponent extraction, two different methods are used: the DMA and the WC. As we can see, the value of
the Hurst exponent (H DMA) corresponds to the morphology of the forms. The H DMA obtained for image a)
is bigger than that corresponding to image b). This is because the shape of the image a) is softer than the shape
of image b). A similar behavior of the H DMA is obtained for the shapes c-d and e-f. In a similar way, the H
WC obtained for image a) is bigger than that corresponding to image b). Table 2 shows the FD and H values
obtained from the edge images of Table 1. The best results were obtained from images such as those in Table 1.
The values highlighted in red do not correspond to the type of morphology analyzed. Therefore, the FD and H
are calculated for the binary images of the ROI in thermograms, not for its edges.
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Figure 2: Shape with a) Smooth and b) Roughness contours.

Table 1: Calculated FD and H values for the binary image smooth (a) and rougher (b) shape.

Shape
FD BCM 1.34219 1.36556 1.30733 1.32525 1.23158 1.2664
H DMA 0.32663 0.30295 0.16742 0.15135 0.43383 0.33413
H WC 0.3837 0.38295 0.38435 0.38399 0.37304 0.3724

Table 2: Calculated FD and H values edge from binary image for the smooth(a) and rougher (b) shape.

Shape

FD BCM 0.86048 0.67788 0.69267 0.67475 0.76842 0.73351

H DMA 0.086055 0.086605 0.21407 0.2168 0.13775 0.12693

H WC 1.70926 0.2795 0.16261 0.14812 0.204 0.19107

4. FRACTAL ANALYSIS OF BREAST THERMOGRAMS

According to the literature, malignant and benign cells show fractal characteristic patterns. The morphological
analysis of cells by fractals can be used to differentiate between one case or another. We studied 8 breast
thermograms available in the public database of Visual Lab of the Federal Fluminense University of Brazil18.
Hence, we have 4 labeled as unhealthy and 4 labeled as healthy. The study is based on the analysis of the hottest
regions. A 2D surface of temperature increases are obtained by Alvarado et al.3, and extraction of the ROI by
Zermeño et al.,.4 The Figs. 3a and 3b shows a thermogram labeled as healthy it is represented represented by
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increases in temperature. The ROI and their edge of the hottest region is shows in Figs. 3c and 3d. In the same
way, Figs. 4a and 4b shows a thermogram labeled as unhealthy.

Figure 3: Thermogram labeled as healthy represented by increases in temperature. a) Right breast. b) Left
breast. c) Hottest ROI. d) Boundary contours of the hottest ROI ∆tmax = 1.9763.

Figure 4: Thermogram labeled as unhealthy represented by increases in temperature. a) Right breast. b) Left
breast. c) Hottest ROI. d) Boundary contours of the hottest ROI ∆tmax = 4.06.

The ROI of breast thermography images is characterized by fractal analysis. This values are shown in Table
3. The FD BCM from healthy thermogram ranges [0.45, 0.81] and from a unhealthy case it ranges [0.92, 1.33].
This value can significantly difference between both cases.

Table 3: Values of FD of breast thermograms.

Case h1 h2 h3 h4 u1 u2 u3 u4

FD BCM 0.606 0.645 0.454 0.8133 0.988 0.921 1.266 1.333

A feature vector that describes the ROI of a thermogram, is defined as d1 = [Area,∆tmax, FD BCM ]. These
features are obtained from 16 breast thermograms. The results of Fig. 5 clearly show that the descriptors allow
to differentiate between unhealthy and healthy breast thermograms. In a similar way, the Fig. 6 shows the
results obtained by means of a feature vector d2 = [FD BCM , H DMA, H WC] from 16 breast thermograms.
These results allow to identify malignancy and benign cases.
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Figure 5: Three dimensional feature space applied to the ROI of 16 breast thermographic images. A feature
vector is composed by d1 = [Area,∆tmax, FD BCM ].

Figure 6: Three dimensional feature space applied to the ROI of 16 breast thermographic images. A feature
vector is composed by d2 = [FD BCM , H DMA, H WC].
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5. CONCLUSIONS

In this paper we characterize the ROIs of breast thermograms by means fractal analisis. First, we present the
numerical analysis using synthetic images. The values of FD and H are congruent with the morphology of the
objects. As it was shown in the Tables 1 and 2. Next, eight images from the DMR database were analyzed. The
results in Table 3 show that, the FD BCM values ranges from [0.45,0.81] in 4 healthy cases and from [0.92,1.33]
in 4 unhealthy cases. The results obtained by means of features vectors d1 = [Area; tmax; FD BCM] and d2 =
[FD BCM, H DMA, H WC] that describes the ROI from 16 breast thermograms showed in the Figs. 5 and 6
allow to identify malignancy and benign cases.
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