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1. Introduction

Tchebichef (Chebyshev) moments have been extensively used
in the field of image analysis and pattern recognition. Mukun-
dan et al. [18] introduced for the first time the moments of
Tchebichef. The use of Tchebichef polynomials as kernel of mo-
ments, which eliminate the need for numerical approximation, sat-
isfy the orthogonal condition in discrete domain of digital image
[15,17,18]. The Tchebichef moments are used in many applications
such as: image watermarking [4,12,29], feature invariants in pat-
tern recognition [19,28,31], vehicle logo recognition [20], image
compression [7,16,21], speech recognition [5,6], image restoration
[23,27], human action recognition [13], facial recognition [3], med-
ical image registration [26], and texture-based image recognition
[2].

Mukundan et al. [18] discuss some computational aspects of
Tchebichef polynomials and moments, such as symmetry property,
polynomial expansion, and recurrence relations with respect to n
and x. However, one problem encountered in the calculation of
high-order polynomial values is the propagation of numerical er-
ror while using the recursive relation with respect to n [30]. The
recursive procedure used for polynomial evaluation can be suitably
modified to reduce the accumulation of numerical error with the
recurrence relation in x-direction proposed by Mukundan [15].

From the recurrence relations different strategies have been de-
veloped for the computation of Tchebichef moments. Wang and
Wang [24] used Clenshaws recurrence formula to develop recur-
sive algorithms for the computation of the forward and inverse
Tchebichef moments. Kotoulas and Andreadis [11] present a hard-
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ware architecture using FPGA which enables real-time process-
ing of binary and grayscale images. Shu et al. [22] propose a
new approach for fast computation through image block repre-
sentation for binary image and intensity slice representation for
grayscale images. Honarvar et al. [9] derive a simplified recur-
rence relationship to compute Tchebichef polynomials based on Z-
transform properties. Recently, Abdulhussain et al. [1] propose a
new method for computing high order moments, their algorithm
is based on the integration in a sequential manner of two tradi-
tional recurrence relations (the x-direction and the n-direction al-
gorithms) proposed by Mukundan [15]. Even so, the orthogonality
of Tchebichef polynomials for higher orders is destroyed because of
numerical approximation. This problem severely affects the qual-
ity of image reconstruction particularly in high resolution images.
A solution can be devised to eliminate the carry error to compute
high-order polynomials through the Gram-Schmidt process. On the
other hand, to quantify the orthogonality error of the Tchebichef
polynomials, we propose to use the universal quality index in or-
der to know the size N and the order n that satisfies the orthogo-
nality condition.

2. Tchebichef polynomials

The classical orthogonal polynomials are characterized by being
solutions of the differential equation of the hypergeometric type
defined as

0=0X)AVta(x; N) + T(X) Atn(x; N) + Ap (1)

where At (x; N) =tqa(x+ 1;N) —th(x; N), Vta(x; N) =ty (x; N) —
tn(x — 1; N) denote the forward and backward finite difference op-
erator, respectively. Hence AVt,(x;N) =tn(x+ 1;N) — 2ty (x; N) +
tn(x — 1; N). Finally, o(x) and t(x) are polynomials of at most
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the second and first degree, and A, is a constant. The variation
on their values can form various types of orthogonal polynomi-
als such as: Tchebichef, Mexnier, Kravchuk, Charlier, Hahn, dual
Hahn and Racah polynomials. The initial values of the Tchebichef
polynomials are given by,

o(x) = x(N—x) (2)
T(X) =N-1-2x (3)
An =n(n+1) (4)

Vn,x=0,1,2,...,N—-1

where n is order of the polynomial and N is the discrete domain
of the polynomial. The solution of the differential equation can be
defined by the hypergeometric function,

ta(;N) = (1 =N)3B(—n,—x.1+n;1,1-N; 1) (5)
where (- ), is the Pochhammer symbol given by
(a)y=a(@+1)(@+2)...(a+k-1). (6)

The 3F,(-) is the generalized hypergeometric function, defined
as

sB(-n,—x1+m1,1-N:1)=)" (7?1);{((71)‘%1(\11)2?)’{’
k=0 k k™*

(7)

The set of t;(x; N) satisfies the following orthogonality condition,

N-1
Dt (X Nt (% N)O (%) = pmdy (8)

x=0

where 8y is the Kronecker delta, o(x) is the weight, and d? is the
squared norm, defined as

1, n=m
Snm = {0’ n # m. (9)
o) =1, (10)
2 (N+n)! (11)

"T2n+ DH(N—n—1)!

Therefore, the Tchebichef polynomials orthonormalized are defined
as follows

N = 2B ANy B e —x 1+ m 1L 1N 1) (12)

Moreover, the symmetry property of the Tchebichef polynomi-
als reduces the computation time, which is defined as follows

ta(N—=1—=x;N) = (=1)"t,(x; N) (13)
3. The recurrence algorithms

Mukundan [15] and Zhu et al. [30] propose to use recurrence
relations to reduce numerical instability. Recurrence relations can
be calculated in two directions: in the direction of n order and in
the direction of x variable. In this section we present a review of
recurrence relation with respect to n and to x proposed by Mukun-
dan [15] and Zhu et al. [30], as well as the method of Abdulhus-
sain et al. [1] that is a combination of both. Also, a recurrence re-
lation simplified with respect to n is proposed.

3.1. Recurrence relation with respect to n

Mukundan [15] proposes the following three-term recurrence
relation,
th(X; N) = aqxty_1(X; N) + aatp_1(X; N) + o3ty _2(x; N) (14)

where

o 2 4n2 -1

T=hy N2 Zn2

v, = LoN [an2 -1

2T N2 —n?

g = o1 2041 IN2 — (n—1)?
3T 2n—3 N2 —n

On the other hand, Zhu et al. [30] propose two general forms
for obtaining classical orthogonal polynomials, which include the
Tchebichef polynomials. The general form for recurrence relation
with respect to n, is given by

Aty (x; N) = B-Dt,_1(x; N) + C - Ety_»(x: N) (15)
where
n
A= 22n—1)
c_ (n- D[N? - (n—1)*]
22n—1)
Do n+1)
(N2 —n?)(2n-1)

E— 2n+1
(N =n2)[N2 - (n-1)’]@2n-3)

It is easy to see that the coefficients of the recurrence relation
of three terms can be algebraically reduced. In this paper we pro-
pose the simplification of Eq. (15), which is given by,

ntn(X; N) = @ty (% N) — 0p_1tp_2(x; N) (16)

where

w=2x-N+1

N2 — n2
“n =M anrnH@En-1)

Note that w has to be calculated once and remains constant when
we calculate each n order, while w, depends on n.

For the initial numerical calculation, Tchebichef polynomials of
zero-order and first-order are given by

to(x; N) = \LFN (17)

The initial conditions are the same for the Egs. (14)-(16).
3.2. Recurrence relation with respect to x

Mukundan [15] proposes the three-term recurrence algorithm
in the x-direction is defined as

ta(X: N) = Bita (X — 1: N) + Batn(x — 2 N) (19)
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Fig. 1. Orthogonality test of different recurrence relations with size N.

Fig. 2. Resolution of test images: (a) 4000 x 4000 px, (b) 6000 x 6000 px, and (c)

8000 x 8000 px. Number of cycles: (a) w = 200, (b) w = 250, and (c) @ = 300.

where

—-nn+1)—2x—-1)(x—N-1)—x

pr =
B =

X(N —Xx)

x-1)x-N-1)
X(N —Xx)

Moreover, Zhu et al. [30] propose a general form for obtaining
Tchebichef polynomials whit respect to x, which are given by

a6 N) = Vo) |:20(x—1)+r(x—1)—)»,~,

ox-1)+t(x—-1) fo(x—1)

ox-1 tn(x—Z;N):| (20)

Jex-2)

The initial values for the recurrence relations can be obtained
by

xth(X—1;N) —

1
to(O;N) = ﬁ
IN—n [2n+1
tn(O; N) = — N+n 2n_1tn_1(0;N)

ta(1; Ny = (1 + ”(11_+[5’))tn(o; N)

3.3. Three-term recurrence algorithm for higher polynomial order

Abdulhussain et al. [1] proposed an algorithm, which is based
on the integration of the recurrence relation with respect to x and
respect to n in sequential manner. The three-term recurrence al-
gorithm for higher polynomial order is given by Eq. (21) where

le=N/2 = \/(N/2)? — (n/2)*. The values for the second half of
the polynomial array where n=0,1,..., N-1 and x=N/2,N/2 +
1,..., N —1 are obtained using the symmetry condition property
defined by Eq. (13).

Bitn(x — 1; N) + Botn(x — 2; N)
forO<n<N/2-1 and 2 <x<N/2-1
o1 Xth_1 (X; N) + aatn_1 (x; N) + astp_2(x; N)
for NN2<n<N-1 and Iy <x<N/2-1
Bitn(x — 1; N) + Batn(x — 2; N)
for NN2<n<N-land,—12 <x <],

ta(x; N)= (21)

4. Tchebichef moments

Tchebichef moments T, , of an image f(x, y) of size Nx M are
a set of orthogonal moments, which can be defined by

N-1M-1

Bum =3 3 ta(x: N)m (x: M) f(.9) (22)

x=0 y=0

where n=0,1,2,...N—1 and m=0,1,2,...,M—1. In matrix
form, the Tchebichef moments matrix, Q, is defined as

Q=TiAT, (23)
where (') denotes the transpose of the matrix and

Q= {aul

Ty = {ta(x: N)}5

Ty = {tm(y: M)}

A= {fxy) (24)

According to orthogonal theories, the image function f(x, y) can be

written completely in terms of the Tchebichef moments. The re-

constructed discrete distribution of the image is given by

~ N—1M-1

fxy)= Z Z tn (X; N)tm (X; M)nm (25)
n=0 m=0

where f(x, y) is the reconstructed version of f(x, y). Image recon-

struction can help to determine how well an image may be char-

acterized by a small finite set of its moments. Also, the image can
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Fig. 3. Comparative analysis of NIRE with different resolutions: (a) 4000 x 4000 px, (c) 6000 x 6000 px, and (e) 8000 x 8000 px. Image reconstruction with different resolu-
tions: (b) 4000 x 4000 px, (d) 6000 x 6000 px, and (f) 8000 x 8000 px.
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Fig. 4. Reconstruction of standard images with the mega-scale size of 8000 x 8000
pixels. (a) Dark-hair woman (NIRE = 4.8155 x 10-2° with 8000 x 8000 moments).
(b) Pepper (NIRE = 4.959 x 10-2° with 8000 x 8000 moments). (c) House (NIRE =
4.8258 x 10729 with 8000 x 8000 moments). (b) Lena (NIRE = 4.7983 x 10~2° with
8000 x 8000 moments).

be reconstructed in the matrix form,
A= T’1 QT,. (26)

5. Orthonormalization of the Tchebichef polynomials with
Gram-Schmidt process

The kernel of Tchebichef moments is calculated by recur-
rence relations, which leads to propagation and accumulation of
rounding-off errors for the calculation of high order moments and
large images. In optics, Gram-Schmidt process is commonly used
to correct errors in wavefront expansion with Zernike polynomi-
als [14]. In this work a similar approach is taken to correct the
numerical instability of the high-order Tchebichef moments. The
kernel orthonormalization of the Tchebichef moments is given by
Algorithm 1.

Note that in Algorithm 1, we use the recurrence relation of
Eq. (16). The proposed recurrence relation is much easier to im-
plement because it has fewer operations than the other recurrence
relations with respect to n.

6. Orthogonality preservation

The preservation of the orthogonality condition in orthogonal
moments ensures that the descriptors or moments are linearly in-
dependent and do not have information redundancy. The orthog-
onality condition can be expressed by the matrix form given by,

-1, (27)

where T is the identity matrix. In order to estimate the structural
similarity between the identity matrix and the obtained with the
Tchebichef polynomials, we can calculate the universal quality in-
dex (UQI). This index is designed by modeling any image distortion
as a combination of three factors: loss of correlation, luminance

Algorithm 1 Orthonormalization of the Tchebichef polynomials
with Gram-Schmidt process.
1: w«2x—N+1Vx=0,1,2,...,N-1

. /N2-1
2: Wy < 3

3: tog(x; N) < ﬁ
4 t1(x; N) < wﬂ]to(x; N)
5: forn=2to N-1do

. N2_p2
6 W2 <N/ mirhen=n

7 (G N) < ghta (6 N) — %tn_1 x:N)
Wi <~ Wy

: TX N) <t 1 (% N)
10: for k=0 ton do
11: b1 (6 N) < o (6 N) = [X350 T N)t (6 N)| x (x; N)
12:  end for

. N-1 5 2
13 h< V 2xmo [tnr1 (X N)]

t x;N
14 tp1(6N) < %
15: end for

distortion, and contrast distortion [25]. For a matrix T of size N x N,
UQI is defined,

401pMihp

uQl =
(1§ + 13) (0 = 07)

(28)

where ) and up are the mean matrix values for identity matrix
and the matrix obtained from Eq. (27), o and op are the standard
deviation for identity matrix (I; ;) and the matrix (I; ;), finally, oy,
is calculated as

=
=

1
Nz -1

Okp = [Lj— ] [iu — 1tp]- (29)

Il
o
Il
o

J
The dynamic range of Q is [—1, 1], the higher value of Q indicates a
higher degree of structural similarity. Therefore, polynomials meet

the orthogonality condition when Q~ 1. The orthogonality test of
moment kernel is defined by Algorithm 2.

Algorithm 2 Orthogonality test.
1: Error < 0.99999
2: for N=0 to H do
3: UuQl <1
4: n<«1 N
50 T={ta(x N)};:j’z(;
6: while and(UQI > Error,n < N) do
7
8

n<n+1
~ Vi=0,1,2,....N—-1
! ‘_T"J]Jf.fvj' =0,1,2,...n
Aoypliip
9: UQI « ——KpZklP
R 72 G
10: end while
11: qn < n
12: end for

The Tchebichef polynomials can be calculated with the different
recurrence relations. However, if the calculation of the Tchebichef
polynomials is correct, g, is a straight line, i.e., gy = N. Fig. 1 shows
the values of gy for different recurrence relations. Also, it can be
observed that the Tchebichef polynomials calculated with Gram-
Schmidt process satisfy the orthogonality condition. Table 1 shows
the limit values gy and qy of the different recurrence relations that
meet the orthogonality condition for different resolutions.
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Table 1
Limit values qy and qy for different methods and resolutions.
Method Megapixels  Resolution qn am
N x M

Our recurrence relation with respect to n 1 1280 x 960 288 252
2 1600 x 1200 321 278
3 2048 x 1336 359 298
4 2240 x 1680 384 335
5 2560 x 1920 401 352
6 3000 x 2000 447 352
7 3072 x 2304 438 392
8 3264 x 2448 463 394

Mukundan [15] respect to n 1 1280 x 960 291 278
2 1600 x 1200 319 271
3 2048 x 1336 351 296
4 2240 x 1680 379 324
5 2560 x 1920 395 346
6 3000 x 2000 434 352
7 3072 x 2304 441 376
8 3264 x 2448 444 388

Mukundan [15] respect to x 1 1280 x 960 1267 957
2 1600 x 1200 1407 1163
3 2048 x 1336 1630 1256
4 2240 x 1680 1716 1448
5 2560 x 1920 1849 1568
6 3000 x 2000 2020 1605
7 3072 x 2304 2044 1743
8 3264 x 2448 2114 1804

Abduhussian et al. [1] method 1 1280 x 960 642 482
2 1600 x 1200 804 602
3 2048 x 1336 1028 672
4 2240 x 1680 1124 843
5 2560 x 1920 1284 963
6 3000 x 2000 1505 1004
7 3072 x 2304 1540 1156
8 3264 x 2448 1638 1229

Our method with Gram-Schmidt process 1 1280 x 960 1280 960
2 1600 x 1200 1600 1200
3 2048 x 1336 2048 1336
4 2240 x 1680 2240 1680
5 2560 x 1920 2560 1920
6 3000 x 2000 3000 2000
7 3072 x 2304 3072 2304
8 3264 x 2448 3264 2448

Table 2
Average computation time of moments for four standard images (dark-hair woman, pepper, house and Lena) with different mega-scale size.
Method Moments Resolution Resolution Resolution Resolution
1000 x 1000 px 2000 x 2000 px 4000 x 4000 px 8000 x 8000 px
Our recurrence relation r with respect to n 50 x 50 0.0066s 0.0162s 0.0508s 0.17530s
100 x 100  0.0120s 0.0278s 0.0931s 0.31860s
200 x 200  0.0260s 0.0614s 0.1932s 0.65539s
Mukundan [15] respect to n 50 x 50 0.0075s 0.0178s 0.0556s 0.17566s
100 x 100  0.0130s 0.0323s 0.0869s 0.32890s
200 x 200  0.0294s 0.0603s 0.1998s 0.65382s
Mukundan [15] respect to x 50 x 50 0.0102s 0.0227s 0.0616s 0.20462s
100 x 100  0.0179s 0.0453s 0.1131s 0.37035s
200 x 200  0.0373s 0.0836s 0.2307s 0.74858s
Our method with Gram-Schmidt process 50 x 50 0.0196s 0.0434s 0.1019s 0.27035s
100 x 100  0.0614s 0.1213s 0.3218s 0.73763s
200 x 200  0.1829s 0.4374s 1.1195s 2.5563s
Shu et al. [22] method 50 x 50 20.3743s 75.5767s 274.9019s 1003.9s
100 x 100  48.6296s 152.5524s 460.0353s 1423.2s
200 x 200  96.1680s 281.4589s 766.5941s 2144.1s

7. Experimental results

This section presents the performance evaluation of the pro-
posed method used to validate the theoretical framework pre-
sented above. Sinusoidal Siemens star is used to test the resolution
of optical systems. It consists of a pattern of sinusoidal oscillations

in a polar coordinate system such that the spatial frequency varies

for concentric circles of different sizes and is defined as [8],

[(0) = a+ bsin (wb — ¢),

where a represents the mean intensity value, b is the amplitude of
the intensity oscillations, w is the integer number of cycles within

(30)
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Table 3
Comparison of execution-time ratio improvement between our proposed recurrence relation with respect to n and other methods.
Method Moments Resolution Resolution Resolution Resolution
1000 x 1000 px 2000 x 2000 px 4000 x 4000 px 8000 x 8000 px
Mukundan [15] respect ton 50 x 50 12.00% 8.99% 8.63% 0.20%
100 x 100  7.69% 13.93% 7.13% 3.13%
200 x 200  11.56% 1.82% 3.30% 0.24%
Mukundan [15] respect to x 50 x 50 35.29% 28.63% 17.53% 14.33%
100 x 100  32.96% 38.63% 17.68% 13.97%
200 x 200  30.29% 26.55% 16.25% 12.45
Shu et al. [22] method 50 x 50 99.97% 99.98% 99.98% 99.98%
100 x 100  99.97% 99.98% 99.98% 99.98%
200 x 200  99.97% 99.98% 99.97% 99.97%

the complete 27 radians of the star, and ¢ is the potential phase
offset. In this work, we can use Eq. (30) to measure the spatial
frequency response of image reconstruction. For the comparative
analysis, a=0, b =255, ¢ =0 and w = 200, 250, 300 are consid-
ered for the three test images, which are shown in Fig. 2.

The spokes of sinusoidal Siemens star never touch, the gaps
between them become narrower, except in the center. However,
when image reconstruction is limited, the spokes appear to touch
at some distance from the center. Therefore, a greater number of
frequencies or high orders are required to reconstruct the center of
the star.

To quantify the performance of the proposed method the nor-
malized image reconstruction error (NIRE) is used. It is defined as
the normalized mean square error between the original image f(x,
y) and its reconstruction f(x,y) , and in discrete form is given by

SV YN [y - Fan]’

NIRE =
Yoo I f2(x.y)

(31)

On the other hand, image reconstruction can help to establish
the feature representation capability of Tchebichef moments by a
small finite set of its moments. The results in term of NIRE and im-
age reconstruction with the different recurrence relation are shown
in Fig. 3.

The proposed method has the ability to reconstruct the image
with close to zero errors. Fig. 4 shows the reconstruction of four
standard images with mega-scale size.

In terms of execution-time, the proposed method has high com-
putational costs because it is a complex process to correct numer-
ical instability through the Gram-Schmidt orthonormalization pro-
cess. However, the computation times of the proposed method us-
ing the matrix form by Eq. (23) and software specialized in matrix
operations have better performance than the fast computation of
Tchebichef moments proposed by Shu et al. [22]. Table 2 shows the
average time of four standard images using different recurrence re-
lations and the rapid computation proposed by Shu et al. [22]. On
the other hand, our recurrence relation with respect to n presents
a better execution-time than the different methods. The execution-
time improvement ratio (ETIR) is used as criterion to compare the
different computation methods [10]. It is defined as follows

ETIR = <1 - T’.me1> «100 (32)
Time,

where Time;and Time, are the execution-time of the first and sec-
ond methods. The execution-time ratio improvement of the mo-
ments with our proposed recurrence relation with respect to n is
shown in Table 3. The algorithms were implemented in MATLAB
edition R2016a on a PC Intel(R) Core(TM) i7-6500U 2.50Hz, 8GB
RAM.

8. Conclusions

In this paper, we have presented a new recurrence algorithm to
compute the kernel of Tchebichef moments. The proposed method
is based on orthonormalization the Tchebichef polynomials us-
ing the Gram-Schmidt process. In addition, algebraic simplifica-
tion of the three-term recurrence relations used in the Gram-
Schmidt process helps to reduce numerical instability and compu-
tation times. The proposed algorithm can generate the Tchebichef
polynomials for large lengths and higher orders. We have also ana-
lyzed the importance of preserving orthogonality. The orthogonal-
ity test is an important factor in the development of real-world
pattern recognition applications; it guarantees that the descriptors
or moments are linearly independent with minimal redundant in-
formation. Experimental results conclusively prove the effective-
ness of the recurrence relations, used in the Gram-Schmidt pro-
cess, in computing the kernel of Tchebichef moments. The pro-
posed method has been used for image reconstruction and this
effectively illustrates its descriptive capacity with respect to other
methods.
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