

DOCTORADO EN OPTOMECATRÓNICA EN COMPETENCIAS PROFESIONALES

ASIGNATURA DE ROBÓTICA MÓVIL

PROPÓSITO DE APRENDIZAJE DE LA ASIGNATURA	El objetivo de esta asignatura es proporcionar al estudiante las herramientas matemáticas de modelado cinemático y dinámico de robots móviles, así como técnicas de planeación de trayectorias para ejecutar movimientos controlados.							
CUATRIMESTRE	TERCERO	ERCERO						
TOTAL DE HODAS	PRESENCIALES	NO PRESENCIALES	HORAS POR	PRESENCIALES	NO PRESENCIALES			
TOTAL DE HORAS	75	15	SEMANA	5	1			

UNIDADES DE APRENDIZAJE	HORAS D	HORAS DEL SABER		HORAS DEL SABER HACER		TOTALES
	Р	NP	Р	NP	Р	NP
I. Cinemática de robots móviles.	10	0	15	5	25	5
II. Dinámica de robots móviles.	10	0	15	5	25	5
III. Planeación y navegación.	10	0	15	5	25	5
	30		15	15	75	15

TOTALES 30 0 45 15 75 15

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT	
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022	

COMPETENCIA A LA QUE CONTRIBUYE LA ASIGNATURA

De acuerdo con la metodología de diseño curricular de la DGUTyP, las competencias se desagregan en dos niveles de desempeño: Unidades de Competencias y Capacidades.

La presente asignatura contribuye al logro de la competencia y los niveles de desagregación descritos a continuación:

COMPETENCIA: Calcular el modelo cinemático y dinámico de robots móviles para el análisis de sus capacidades y desempeño en tareas de planeación y navegación en ambientes conocidos.

UNIDADES DE COMPETENCIA	CAPACIDADES	CRITERIOS DE DESEMPEÑO
Analizar los diferentes aspectos del	Obtener el modelo cinemático de	Reporte de prácticas de cálculo y análisis del modelo cinemático de
diseño de robots móviles mediante	diferentes configuraciones de	distintos tipos de robots móviles
	robots móviles, así como el análisis	
cinemático de diferentes	de características como grados de	
configuraciones de robots móviles.	movilidad y direccionalidad.	
		Reporte de prácticas de cálculo y análisis del modelo dinámico de
·		distintos tipos de robots móviles
	robots y analizar la interacción de	
generación de trayectorias y	las distintas fuerzas involucradas	
evasión de obstáculos en	en un robot móvil.	
ambientes de simulación.	Calcular trayectorias de	Reporte de prácticas de cálculo y análisis de generación de trayectorias
	movimiento en ambientes	usando distintos métodos.
	controlados de acuerdo a las	
	características de movilidad del	
	robot en cuestión.	

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT	
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022	

UNIDADES DE APRENDIZAJE

UNIDAD DE APRENDIZAJE	I. Cinemática	Cinemática de robots móviles.							
PROPÓSITO ESPERADO	Describir de m	escribir de manera matemática el movimiento de un robot móvil en función del movimiento de sus actuadores.							
HODAS TOTALES	Р	NP	HORAS DEL	Р	NP	HORAS DEL	Р	NP	
HORAS TOTALES	25	5	SABER	10	0	SABER HACER	15	5	

TEMAS	SABER DIMENSIÓN CONCEPTUAL	SABER HACER DIMENSIÓN ACTUACIONAL	SER DIMENSIÓN SOCIOAFECTIVA
Modelo cinemático	Representación de la posición	Cálculo del modelo cinemático directo e	Analítico
con restricciones	Cinemática directa e inversa	inverso de un robot móvil	Proactivo
	Restricciones		Autónomo
			Responsable
			Ordenado
			Observador
			Disciplinado
Maniobrabilidad	Grados de movilidad	Cálculo de la maniobrabilidad de un robot	Analítico
de un robot móvil	Grados de direccionalidad		Proactivo
			Autónomo
			Responsable
			Ordenado
			Observador
			Disciplinado
Espacio de trabajo	Grados de libertad	Cálculo del espacio de trabajo de un robot	Analítico
de un robot móvil	Robots holonómicos	móvil	Proactivo
			Autónomo
			Responsable
			Ordenado
			Observador
			Disciplinado

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

PROCESO DE EVALUACIÓN	TÉCNICAS	_	PACIO RMAC	_		
EVIDENCIA DE DESEMPEÑO	INSTRUMENTO EVALUACIÓN	SUGERIDAS DE ENSEÑANZA Y APRENDIZAJE	AU LA	TAL LER	OT RO	MATERIALES Y EQUIPOS
Para acreditar la asignatura deberá tener una calificación mínima de 8. Se realizará una evaluación integral basada en los siguientes aspectos. Dominio del contenido del curso. Participación en las sesiones teóricas y prácticas. Puesta en marcha de experimentos de laboratorio. Capacidad para la solución de problemas incluyendo programas por computadora.	prácticas de laboratorio. Ejercicios prácticos.	Solución de problemas Exposición Tareas de investigación Prácticas de laboratorio	Х	Х		Material y equipo de laboratorio. Pizarrón. Plumón. Material impreso. Software especializado. Computadora. Internet.

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

UNIDAD DE APRENDIZAJE PROPÓSITO ESPERADO		sistema de	ióviles. ecuaciones diferencia	iles que rela	icione las fuei	zas aplicadas a los a	actuadores y el	movimento
HORAS TOTALES	de los robot	NP	HORAS DEL	Р	NP	HORAS DEL	Р	NP
HORAS IOTALES	25	5	SABER	10	0	SABER HACER	15	5

TEMAS	SABER DIMENSIÓN CONCEPTUAL	SABER HACER DIMENSIÓN ACTUACIONAL	SER DIMENSIÓN SOCIOAFECTIVA
Modelo basado en multiplicadores de Lagrange	Coordenadas generalizadas Energía cinética y potencial Velocidades lineales y angulares	Calcular las fuerzas asociadas a la inercia, fuerzas debido a las aceleraciones centrípetas y de Coriolis y el vector de fuerzas gravitacionales.	Proactivo
Modelo basado en el formulismo de Maggi	Principio de trabajos virtuales		Analítico Proactivo Autónomo Responsable Ordenado Observador Disciplinado

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

PROCESO DE EVALUACIÓN	TÉCNICAS	ESPACIO DE FORMACIÓN				
EVIDENCIA DE DESEMPEÑO	INSTRUMENTO EVALUACIÓN	SUGERIDAS DE ENSEÑANZA Y APRENDIZAJE	AU LA	TAL LER	OT RO	MATERIALES Y EQUIPOS
Para acreditar la asignatura deberá tener una calificación mínima de 8. Se realizará una evaluación integral basada en los siguientes aspectos. Dominio del contenido del curso. Participación en las sesiones teóricas y prácticas. Puesta en marcha de experimentos de laboratorio. Capacidad para la solución de problemas incluyendo programas por computadora.	prácticas de laboratorio. Ejercicios prácticos.	Solución de problemas Exposición Tareas de investigación Prácticas de laboratorio	X	Х		Material y equipo de laboratorio. Pizarrón. Plumón. Material impreso. Software especializado. Computadora. Internet.

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

UNIDAD DE APRENDIZAJE	III. Planeació	III. Planeación y navegación.							
PROPÓSITO ESPERADO	Implementar	Implementar y comparar diferentes técnicas de generación de trayectorias para robots móviles.							
HORAS TOTALES	P NP HORAS DEL P NP HORAS DEL P NP						NP		
HORAS TOTALES	25	5	SABER	10	0	SABER HACER	15	5	

TEMAS	SABER DIMENSIÓN CONCEPTUAL	SABER HACER DIMENSIÓN ACTUACIONAL	SER DIMENSIÓN SOCIOAFECTIVA
Planeación con	Campo potencial artificial	Construcción del campo potencial usando las	Analítico
campos potenciales	Cálculo de la fuerza de atracción	coordenadas del objetivo y de los obstáculos	Proactivo
			Autónomo
			Responsable
			Ordenado
			Observador
			Disciplinado
Hojas de ruta	Nodos y conexiones	Programación de la etapa de aprendizaje y la	Analítico
probabilísticas	Búsqueda local	etapa de búsqueda	Proactivo
(Probabilistic Road	Búsqueda global		Autónomo
Maps)			Responsable
			Ordenado
			Observador
			Disciplinado
Navegación	Definición del diagrama de Voronoi	Cálculo del diagrama de Voronoi para	Analítico
mediante diagramas	Optimización de las trayectorias	obstáculos puntuales y no puntuales.	Proactivo
de Voronoi		Implementación del algoritmo de búsqueda	Autónomo
			Responsable
			Ordenado
			Observador
			Disciplinado

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

PROCESO DE EVALUACIÓN	TÉCNICAS		PACIO RMAC			
EVIDENCIA DE DESEMPEÑO	INSTRUMENTO EVALUACIÓN	SUGERIDAS DE ENSEÑANZA Y APRENDIZAJE	AU LA	TAL LER	OT RO	MATERIALES Y EQUIPOS
Para acreditar la asignatura deberá tener una calificación mínima de 8. Se realizará una evaluación integral basada en los siguientes aspectos. Dominio del contenido del curso. Participación en las sesiones teóricas y prácticas. Puesta en marcha de experimentos de laboratorio. Capacidad para la solución de problemas incluyendo programas por computadora.	prácticas de laboratorio. Ejercicios	Solución de problemas Exposición Tareas de investigación Prácticas de laboratorio	X	Х		Material y equipo de laboratorio. Pizarrón. Plumón. Material impreso. Software especializado. Computadora. Internet.

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022

REFERENCIAS BIBLIOGRÁFICAS

AUTOR	AÑO	TÍTULO DEL DOCUMENTO	LUGAR DE PUBLICACIÓN	EDITORIAL	ISBN
Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza	2011	Introduction to Autonomous Mobile Robots	USA	MIT Press	978-0-262-01535-6
Marcin Szuster, Zenon Hendzel	2018	Intelligent Optimal Adaptive Control for Mechatronic Systems	Suiza	Springer	978-3-319-68824-4
Xiaorui Zhu, Youngshik Kim, Mark Andrew Minor, and Chunxin Qiu	2018	Autonomous Mobile Robots in Unknown Outdoor Environments	USA	CRC Press	978-1-498-74055-5
Emin Faruk Kececi, Marco Ceccarelli	2015	Mobile Robots for Dynamic Environments	USA	Momentum Press	978-1-60650-821-3

ELABORÓ:	Comité del Doctorado en Optomecatrónica de la UPT	REVISÓ:	Dirección de Investigación y Posgrado de la UPT
APROBÓ:	DGUTyP	FECHA DE ENTRADA EN VIGOR:	Enero 2022